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CONSTRUCTION, STABILITY AND PREDICTABILITY
OF AN INPUT–OUTPUT TIME-SERIES FOR

AUSTRALIA

RICHARD WOOD∗

Centre for Integrated Sustainability Analysis, A28, The University of Sydney NSW; and
Industrial Ecology Program, NTNU, Norway

(Received 19 February 2010; In final form 15 February 2011)

This paper documents the development of a time series of Australian input2output tables. It describes the
construction techniques employed in order to overcome the major issues encountered. Environmentally
important processes were delineated using a range of detailed commodity data, thus expanding the original
tables from roughly 100 industries into a temporally consistent 344 industries. Data confidentiality and
inconsistency were overcome using an iterative constrained optimisation method called KRAS 2 a recent
modification of RAS (Lenzen et al. 2006; 2007; 2009). The article concludes by analysing the stability of
input2output coefficients over time similar to work in Dietzenbacher and Hoen (2006). The issue of stability
of coefficients and multipliers was investigated under the Leontief and Ghosh models of supply/demand.
Finally, the predictability of the models was examined under updated final demand or primary inputs and over
varying time scales.
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1 INTRODUCTION

Data requirements have greatly increased with the increasingly complex problems

addressed by environmentally extended input2output analysis. Two particular cases

that are now becoming popular concern multi-regional input2output models and temporal

studies. Both cases provide important insights into technology and society as well as

technological and societal change, but require vast amounts of data compared with a

single impact or attribution analysis.

Statistical agencies originally relied wholly on survey techniques to update input2

output tables. However, the expense and time for such surveys has resulted in a move

to more mathematical approaches, especially since Stone’s exposition of the RAS

technique (Stone and Brown, 1962). Today national statistical offices rely on a mix of

survey and mathematical techniques for publishing updated input2output tables.

Originally, the RAS technique was a procedure for balancing row and column totals,

but it was subsequently modified to incorporate superior data on internal elements of a

new table. It has undergone significant development, most of which is outlined recently

elsewhere (Jackson and Murray, 2004; Lahr and de Mesnard, 2004; Lenzen et al., 2006,

2009; Mı́nguez et al., 2009).
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Many analysts are now taking on the work of updating input2output tables themselves

by employing mathematical methods. Major issues include dealing with differing levels of

data availability, changing classifications and changes in methodologies underlying the

published input2output tables, such that when time series analysis or multi-regional

analysis are performed, there is often no consistency across tables. Analysts are hence

left with a considerable task of estimating input2output tables across time and/or

regions, in a common classification, and, possibly, in different prices.

The key aim of this work is to construct such a time-series of the Australian

economy, with an auxiliary aim to disaggregate input2output tables to a useful level of

detail for environmentally important analysis. The function of the paper is to outline the

techniques employed and issues encountered in estimating a time series of input2output

tables for Australia at a high level of detail. In the first part of this work, a RAS variant is

employed that allows for the consideration of any type of superior data that can be

expressed as a linear combination of the table elements, and that act as constraints of

the table to be balanced (Lenzen et al., 2006). The most innovative feature of the technique

is that it can handle incompatibilities among these constraints (Lenzen et al., 2009), as well

as any negative constraint or table value. The main considerations in this method are –

creation of an initial estimate of the system, incorporation of constraints at different

levels of classification on the system and balancing or optimisation of the system.

The application of these balancing techniques reduces the user’s knowledge of uncer-

tainties associated the source data. Error analysis can be undertaken by investigating

distributions of uncertainty in model variables. Recent examples are Percoco et al.

(2006) and Lenzen et al. (2010), who both estimate uncertainty using an assumed log-

normal distribution of stochastic errors in input–output coefficients and final demand.

However, whilst such a method allows for identifying the sectors most prone to error, it

does not address non-stochastic change over time. In addition, it can be expected that,

in real terms, large variations can occur from year to year, especially for industries

affected by natural events. Instead, in this paper, the reliability, or predictability, of

dated and mathematically updated tables is investigated.

Numerous papers have been written on analysing the change in structure over time. Bon

(Bon 1984, 1986, 1988; Bon and Bing, 1993) has concentrated particularly on the predict-

ability of supply and demand multipliers. Whilst Bon’s work does not include updating

tables, his work is of interest in comparing the accuracy of using older transactions

matrices with updated data. Dietzenbacher and Hoen (2006), subsequently referred to as

D&H, couple an analysis of the stability of model coefficients, with the predictability

analysis of Bon.

This paper focuses on Australian input–output data. The situation of table availability

for Australia is such that a semi-survey set of input–output tables (referred to as ‘bench-

mark’ tables in this paper) is published by the Australian Bureau of Statistics circa every

two–four years (with 17 publications in total since 1975). In addition, more aggregated

supply/use tables in purchaser prices were published for a time series of 10 years

(1994/5–2003/4). Finally, the National Accounts, published annually, provide data for

aggregate economic components. In this work, maximum information is incorporated in

the estimation of the tables, and the accuracy of the estimated tables is determined

through comparison with the published tables.

This paper begins with an outline of the construction method in Section 2. The context

of the sector and temporal detail desired in this work is discussed at length (Sections 2.1.1
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and 2.1.2), followed by a description of the system structure (Section 2.1.3); an overview

of data (2.1.4) and processes (2.1.5); the creation of the initial estimate (Sections 2.2, 2.3

and 2.4 for constant price cables); and the application of constraint data (Section 2.5). The

actual balancing is discussed in Section 2.6. The predictability and stability of the esti-

mated time series is then analysed in Section 3. Conclusions are drawn in Section 4.

2 TABLE CONSTRUCTION

2.1 Context

2.1.1 Aggregation Level

An aggregated dataset is easier to construct than a disaggregated dataset, but is inherently

more imprecise. A reduction in industry (or product) resolution can significantly limit a

model for impact analysis and can potentially misinform subsequent decision making,

especially when non-economic indicators are investigated (Lenzen, 2011). It is thus

generally desirable to use the maximum level of detail when compiling integrated

systems of disparate data, and aggregate results after impact analysis, if necessary.

Physical data exogenous to the input–output system is generally available at varying

levels of detail for different industry sectors. The maintenance of the resolution of this

data is one of the principal reasons for working at a high level of detail. For example,

data on material requirements are detailed across mining and similar industries, energy

data are detailed across manufacturing industries and employment data are detailed

across service industries. When performing an energy impact analysis of a good, it is

then important to have precise data on energy requirements of manufacturing processes;

whilst potentially crude assumptions on the energy requirements of the service sector

have limited impact on results. In essence, we seek holistic accuracy rather than the accu-

racy of individual elements (Jensen and West, 1980; Hewings et al., 1988; Gallego and

Lenzen, 2008). The arguments follow the debate in the life-cycle assessment literature

on precision versus accuracy (Suh et al., 2003).

To further highlight this issue (compare Gallego and Lenzen, 2008), the greenhouse gas

emissions allocated to beef cattle are considerably different to the greenhouse gas emis-

sions allocated to sheep farming. If, as is common, the beef cattle industry is aggregated

with sheep farming in a ‘livestock’ industry, there is no way to discern the difference in the

greenhouse gas intensity of the two industries. The consumption of livestock products will

embody a large quantity of greenhouse gases, even if in reality all consumption was of the

sheep products and none from beef cattle. This is important in Australia’s situation, where

large changes in the output of sheep and cattle farming are occurring in opposing direc-

tions and where sheep and cattle sales are often destined for different levels of demand

domestically and for export. In an aggregated framework, the differences in the production

practices are not captured, whereas aggregation after analysis will include these differ-

ences. An empirical study demonstrating this effect is found in Lenzen et al. (2004).

In this work, the task of creating a standardised procedure to generate a detailed

generalised input–output framework was undertaken. As a first step, choices of detail

with respect to the product and industry classification had to be made. In Australia, the

product and industry classifications in published “benchmark’ IO tables (in supply and
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use format) are both shown by the input–output industry classification (IOIC), which is

generally around 100 product/industry sectors. In a second dataset, the product details are

described in more detail with the input–output product classification (IOPC) of around

1000 products, as defined by the ABS (Australian Bureau of Statistics, 2006). These data

only have more detail in the product classification (not the industry classification), hence,

the tables are rectangular Supply and Use matrices measuring about 1000 × 100.

In order to have a temporally consistent set of input–output data, a subset of 344 com-

modity groups was selected from the IOPC. This aggregation level was detailed enough

for most available auxiliary data on primary and environmental inputs, whilst enabling

tractability of classification changes and handling of confidential cells.

When estimating such level of detail, there is always a balance between providing

highly detailed models, and avoiding the manufacture of ‘artificial data’. Whilst the pre-

cision of highly detailed models is something to strive for, the interpretation of results

must reflect the source data. For example, if we know total mining production is increasing

over time, an information gain is obtained if this datum is included in the model; even if no

knowledge is available on the change in the relative amounts of iron ore mining to precious

metal mining. Results can then reflect on the relative aggregate environmental impact of

mining over time, but cannot give a reason for the change due to the mining of specific ores

(even though these data are estimated). The detailed model becomes more powerful,

providing higher quality results, but runs the risk of allowing estimates to become fact.

Returning to this work, the main data estimation across sectors occurs in changing from

a rectangular matrix to a square matrix when disaggregating the 100 or so industries to 344

industries. Section 2.2 explains the procedure undertaken.

2.1.2 Temporal Considerations

In addition to sectoral estimation, a full time series of IO tables was produced from intermit-

tently available tables in various levels of detail. This represents the second main form of data

estimation – interpolation of disaggregate data between benchmark years (where full detail

input–output and high detail commodity tables are available). This choice was based on the

basic purpose of historical analysis in general – this being to (a) analyse general trends over

time, whilst also (b) investigating responses to specific events. Obviously, the method of

interpolation should not skew a trend that one would otherwise conclude from the data.

The cross-benefit is that structural shocks, such as due to the oil crisis in the 1970s or other

recession events are not overlooked if three or five year intervals are taken. It must also be

remembered that in the investigation of temporal change without continuous data an analysis

either explicitly or implicitly uses indexing methods (e.g. Laspeyres, Fischer, Paasche, or

many more) to inform about the derivative of change (whether the change occurred consist-

ently, or more rapidly at the start or end of the time period, etc). These methods are purely

mathematical, and can have a reasonable effect on results in temporal analysis (Dietzenbacher

and Los, 1998; Ang, 2000; Hoekstra and van den Bergh, 2002; Wood and Lenzen, 2006). It is

thus logical to reduce the reliance on the particular choice of indexing method by estimating

development paths across an annual time series. In the work here, as a first estimate, value

added is used as a proxy for interpolation of industry developments from the prior and

later benchmark data. This estimate is then balanced so that it complies with more aggregate

data so that the interpolation gives added insight into the path of change.
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A second important temporal consideration is the stability of classifications used in data

provision over a long time-series, and the effect of changes in methodology on historical

data. Changes in classification are inevitable as new products become available on the

marketplace, and the relative importance of different products and industries grows and

diminishes. The construction of concordance matrices deals with these changes, as

explained further in Section 2.5.2.

Corrections for methodological changes provide a greater challenge. In Australia,

1974–75 began the first recording of intra-industry transactions, and also, the first use

of mathematical techniques to estimate input–output tables (see the comprehensive cover-

age of changes in Gretton, 2005). Gretton identifies four major series of input–output

tables. The first, ending in 1975, was superseded by a series covering the 1978 to 1993

tables. The major changes between 1975 and 1978 were the adoption of a new industry

classification (ASIC 1978), and in methodology, changes to the way imputed finance,

social services consumed by households and some indirect taxes were calculated

(Gretton, 2005). The third series of tables from 1994 to 1999 includes some changes

reversed in the 2002 tables. These included the handling of transport margins for when

product suppliers pay transport invoices.

For this work, consistency in handling transport margins was considered important and

was thus addressed explicitly (Section 2.5.3). For the changes on finance, social services

and indirect taxes, as well as other minor changes, the available data were either included

and changes were assumed negligible on structural results, or the data were excluded, and

tables were balanced to aggregate totals. Being able to address all these changes explicitly

would be ideal, but such a process would require data only (if at all) available in a statisti-

cal bureau, and require a lengthy process that was beyond the scope of this work. Further-

more, it is expected that such detail would have a negligible impact on the type of analysis

under consideration here.

2.1.3 System Structure

The estimated system was set up to be consistent over time and to incorporate all input–

output flows in a supply-use format, and in various pricing layers (United Nations

Department for Economic and Social Affairs Statistics Division, 1999). Variables are

thus chosen for supply and use tables, imports, 11 margin layers and four tax layers

(defined in Table 1).

The variable Zt is used henceforth to represent the full input–output system at a single

point in time t (over a time period t – bold capital indicating a matrix, and bold lowercase

denoting a vector, italic denoting scalar). For convenience, rather than working in a matrix

representation, the lowercase zt is used to represent the vectorised form of the input–

output system – that is, it is a one-dimensional representation of every flow of the

input–output system. zt includes the Supply matrix, Use matrix, Imports matrix, and all

margins and taxes matrices. The size of zt is hence dependent on the number and size

of the variables of the input–output system. In this case, with 344 commodities, 344

industries, five primary inputs, seven levels of final demand and 17 margin and tax

tables as well as the Supply, Use and Imports tables, the size of zt is circa 2.5 million

variables. zt is defined as:

z ¼ vectorisation(V; U; M; Pk; Tk)
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Whilst slightly convoluted here, this distinction is made for practical purposes, as the

matrix format is convenient when using concordance matrices between row/column

classifications in constructing constraints (see Appendix), whilst a vector format is con-

venient for mathematical manipulation. An indexing matrix Zr is used to translate

between the original square format Z and an individual flow in the vectorised format zr.

It should also be noted that the term ‘input–output tables’ is used throughout this piece,

referring to the full set of the supply, use, imports and margins tables, not the symmetric

input–output table (United Nations Department for Economic and Social Affairs Statistics

Division, 1999).

2.1.4 Available Data

Of course, the key to having a reasonably informed model is having reasonable data input.

Here source data are not available with a stable classification because of confidentiality

issues, classification changes, methodological changes and because of temporal gaps

(see Section 2.1.2 and later, as well as Table 2). As the available data are in varying

levels of aggregation and consistency, they cannot be used directly in the model.

TABLE 1. Variables of open input–output system, m commodities, n industries, a types of primary
inputs and b types of final demand.

Variable Dimension Description

x1 m Output, industry.
xc n Output, commodity.
V m,n Supply table, showing sales of Industry i of commodity j, basic prices,

domestic flows.
U m + a,n + b Use table, showing purchases of commodity m by industry n; final

demand, showing purchases of commodity m by destination of final
demand b; primary inputs into industry demand, showing inputs into
production of input type a into industry n, basic prices, domestic
flows.

M m,n + b Imports table, showing purchases of imported commodity m, by
industry n or final demand destination b, c.i.f. valuation, imported
flows.

Tk m + 1,n + b Individual taxes or subsidies, k, paid on product m (plus re-exports) by
industry n or final demand destination b. k tax tables include GST,
Duties, Other taxes, Subsidies.

P m + 1,n + b Total margins (incl. redistribution) paid on product m (plus re-exports)
by industry n or final demand destination b.

Pk m + 1,n + b Individual margins, k, paid on product m (plus re-exports) by industry n
or final demand destination b. k margins tables include Wholesale,
Retail, Hospitality, Road, Rail, Pipeline, Water, Air, Port, Marine,
Gas. Dimensions as above.

gdp 1 × 1 GDP measure.
Upp m,n Use table, showing purchases of commodity m by industry n; final

demand, showing purchases of commodity m by destination of final
demand b; primary inputs into industry demand, showing inputs into
production of input type a into industry n, purchases prices,
domestic flows.
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Instead, the data must be used to refer to sub-aggregates of transactions – much as row/
column totals constrain all production and uses of a product/industry.

The source data availability (Table 2) in this work are 17 sets of ‘benchmark’ input–

output tables in a supply use format including all margin layers and with a classification

of approximately 100 products/industries. Eleven of the sets of benchmark tables are

accompanied by detailed data on the roughly 1000 products by the 100 (or so) industries,

again in supply/use format and in basic and purchaser prices, with all margin and tax

tables (however, post 1999 only aggregate margins paid on each product were available).

Note that these ‘benchmark’ and ‘detailed’ tables are under changing classification and

methodology. An actual time series of aggregated supply/use table in purchaser prices

was also available from the ABS, aggregated in 224 products by 52 industries. Whilst

not consistent with the benchmark IO data, these data did provide a true time series

under consistent methodology and classification, and thus were useful for extracting rela-

tive change (reflecting the combination of both volumetric and price changes). National

accounts data are updated annually and back casted in methodology such that the datasets

are consistent with the most recent benchmark table, and provide annual series of key

national accounts aggregates over the full 30 years. Selective uses of the data were

made in the estimation and balancing process (outlined in the next section). Finally,

some ‘engineering’ data were also used in the creation of the initial estimate (Section

2.2) when changing from rectangular to square tables.

TABLE 2. Summary of main data used in the initial estimate and constraints employed in this
work.

Year Products Industries
Primary
Inputs FD Pricing

IO-data
(benchmark)

2005,2002,1999. . .
(17 years)

103–118
(varies
by year)

103–118
(varies
by year)

7 7 ALL

IO-data
(commodity
details)

2005,2002,1999,. . .
(11 years)

�1000 103–118 - 7 ALL

Purchaser’s price
Supply/Use

2004–1995
(10 years)

224 52 7 7 p.p. +

margin totals
National

Accounts
(current
price)

1975–2005
(30 years)

Varies Varies Varies Varies b.p., p.p

National
Accounts
(constant
price)

1975–2005
(30 years)

Varies Varies Varies Varies b.p., p.p

Engineering
data

n/a Specific Specific 0 Specific n/a

Notes: All data are on Australian financial year (July-June) basis, but referred here by the final year (e.g.

2001–02 data referred to as 2002). b.p. ¼ basic price; p.p. ¼ purchaser price; margin totals ¼ total margin

on each product by type of margin; ALL ¼ full detail on basic price, imports and each individual margin layer.
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FIGURE 1. Flow chart of data (black boxes) and processes (dotted boxes) used in the construction of
the stages (dashed boxes) of the time series.
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2.1.5 Overview of Processes

Starting from the set of square 100 by 100 benchmark tables in supply and use format,

the following processes were used in order to achieve a time series of tables in 344

sectors (Figure 1). In stage 1, an initial estimate was created using available benchmark

data (Section 2.2). Aggregate data were first expanded by detailed data on additional

product rows, before being made square under the assumption of proportionality of

inputs – i.e. that disaggregated columns have the same coefficients as the aggregated

column. Next, a regression process was undertaken in order to estimate missing data

without introducing bias, before tables are adjusted according to additional assumptions

on supply and input coefficients. In stage 2, the KRAS balancing of the initial estimate of

the tables was performed using the benchmark and accounting (balancing) constraints

(Sections 2.5.1, 2.5.2 and for the balancing, 2.6) to give an intermittent series of

tables corresponding to when benchmark data were available. A full time series was con-

structed in stage 3 – firstly by creating an initial estimate for years without benchmark

data (Section 2.3). This was followed by applying supply use data in purchaser prices

(Section 2.5.3) for 1995–2004 (time series 1), and then balancing to the consistent

series of national accounts data (Section 2.5.4) across the full time series. A fourth

step was then performed to convert the time series in current prices to one in constant

prices – again, firstly by creating an unbalanced initial estimate, this time with price

indices (Section 2.4); followed by balancing to constant price national accounts data

(Section 2.5.4).

The application of the KRAS balancing process (Section 2.6) is the same in each stage –

only with a different initial estimate z0 and constraint set c.

2.2 Creation of Initial Estimate for Benchmark Years

The Australian benchmark input–output tables have historically been subject to numerous

classification changes. The first step in creating the full time series was to create an esti-

mate of the tables in a classification stable across all years. This involved adding auxiliary

information and assumptions to go from the temporally inconsistent 100 by 100 (or so)

tables to the selected standard classification of 344 products/industries. As previously

mentioned, more detailed commodity data are available in addition to the data available

in the 100 by 100 tables. This detail on commodities only refers to the type of good,

not where it was consumed, and thus only allows the expansion of the input–output

system by the number of product rows (i.e. the data allow creation of rectangular

supply/use tables). In order to move from rectangular to square tables, data on consump-

tion by disaggregated industry are initially included by assuming proportionality between

product output and input coefficients. That is – the relative output of an individual product

rxc
j is calculated compared with the total output of the aggregated product group

∑
j∗xc

j ,

according to rxc
j = xc

j /
∑

j∗xc
j , where j∗ refers to the aggregate product group. Disaggre-

gated inputs into supply Vij, and use Uij (and imports and margin, tax layers; M, P, T)

are calculated as (per use): Uij = rxc
j × Uij∗. This gives an initial crude disaggregation

of inputs that are to be refined later. At this stage, the coefficients of the disaggregated

industries are identical to the original aggregated industry. This step results in data

being organised in tables with a standard temporally consistent classification, thus allow-

ing for inter-temporal adjustments to be made.
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Due to both confidentiality issues and classification issues, data points for some commod-

ities are only available for a select number of years. In addition to this, various elements of

the original tables are also confidential. One basic requirement before balancing the tables

is that there is an initial estimate of every flow for at least one point in time. Hence, in

order to fill tables for years with confidential or otherwise missing data points, an initial esti-

mate was required for this data. The options canvassed to create this initial estimate were:

assume data points are constant from known years to unknown years; linear regression;

scaling using aggregated data; or some other form of regression (such as log-linear).

The first option, assuming data points are constant, increases the error when some commod-

ity data are known and some commodity data are unknown. In essence, price and volume

changes would be applied to the known commodity data, but no estimates of changes

would be applied to the unknown commodity data. As some specific commodity data are

confidential for most of the 30 year time period, the lack of consideration of these changes

would cause considerable error. The second option of using linear regression was found to

be lacking, as any rapid economic changes would be reflected in the regression by negative

or very large estimates due to endpoints not always being available. Also, in reality, very

little economic growth is linear anyway. The third option, using aggregated data such as

the more aggregated level industry data can only occur if the industry data are non-

confidential, which is not always the case. Further, if the industry data are not confidential,

it will already be applied in the constraints of the balancing process (see next section).

In order to overcome these issues, the fourth option of applying some other form of

regression was taken. Due to the issues previously identified, a stable sign-preserving

form of regression was desired. Assuming the economy has undergone consistent

growth, the exponential form was taken, with a limiting factor to prevent very large esti-

mates. Using the vectorised definition of all flows at time t zt, and for a subset s of time t

(s . t) where a flow zs
r is known, the growth coefficient a is estimated, such that a , a, for

some a – (a limiting factor, chosen to reflects estimated limits to growth rates and to

maintain stability over the time series), according to ln(z(t=s)
r ) = ar(t = s), solved using

ordinary least squares. The missing elements of the initial estimate are then estimated

for known ar from the regression log(z(t=s)
r ) = ar(t = s).

For example, for s ¼ {1999, 1997 and prior}, the flow zs
r that refers to any type of final

consumption of agricultural services is known. However, for t ¼ {2002, 2005}, this flow

is confidential. Thus, the set of years 1999 and earlier is used to estimate ar which is then

used to estimate zt
r for t ¼ {2002, 2005}.

This method should not be considered ideal – volume and price changes are not

accounted for separately due to data availability; the regression is not fully tested

through subsequent statistical analysis. However, it was considered adequate for the

current work because the actual number of data points estimated in this procedure is

small (only confidential data, or missing data due to classification changes – probably

less than 10% of data). The importance of these data points is also generally small

(most important flows in the input–output tables are non-confidential and represented

in stable classification). All flows are also subsequently balanced to available industry

data, row totals and column totals; and the method is not applied to years where no

input–output data are available. The advantages are that this method provides a reasonable

first estimate of otherwise unknown flows without introducing an obvious bias.

Following this estimation of missing data, tables are now available in a standard classi-

fication (first step), and without missing elements (second step). As a third step, the rather
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crude splitting of inputs into disaggregate industries (and supply of disaggregate indus-

tries) is improved by means of ‘engineering’ data, following a session convened to

utilise expert knowledge (Foran et al., 2003). These data improved the initial splitting

of the aggregate industries by firstly assuming diagonal supply (compare Mastoris et al.,

2002) within the main diagonal block of the aggregate industry. Secondly, data on

inputs were adjusted according to expectations of zero flows (e.g. no inputs of bauxite

into any metal ore processing industries apart from alumina). Secondary data sources

from the expert session (Foran et al., 2003) were then used to give rough approximations

of inputs for products such as electricity – with, for example slightly less than two-thirds

of electricity use by all types of non-ferrous metal coming from aluminium production,

15% coming from alumina, and the remainder coming from other non-ferrous metals.

The disaggregation of inputs from other sectors such as services and agriculture was

left from the original proportionate distribution at this stage (prior to balancing). When

analysing specific questions such as electricity use by different disaggregated industries,

this type of allocation performed here would possibly not be adequate. An example of

extending this basic system to allow physical allocation of such commodities as electricity

in order to address differences in non-ferrous metals is shown in Wood and Dey (2009).

To re-establish the context to this method, a further example is given: in this work, the

industry grains are disaggregated into wheat, barley, rice, oilseeds, and other grains. For

primary environmental inputs, considerable differences could be expected, but for econ-

omic inputs, the coefficients of the wheat industry would be expected to be reasonably

similar to that of the barley industry, and somewhat similar to the rice industry. The impor-

tance of having the industry disaggregated comes when the environmental data are

appended to the IO tables. We know rice has a much larger direct extraction of water

than the other industries – hence both the water intensity and multiplier of rice will be

much larger than the intensity/multiplier of the original ‘grains’ industry. Beer is made

from barley and other grains (no rice), and some spirits in Australia are made from rice.

Hence, in an aggregated study, beer would obtain part of the water footprint of rice. In

a disaggregated study, we could make that distinction.

2.3 Method for Creating Initial Estimate for Non-Benchmark Years

For years with no benchmark input–output data, a weighted average calculation is made

from available data for preceding and subsequent benchmark years to arrive at an initial

estimate. The initial estimate for years with no IO data was only constructed once a

complete balancing had been performed for years with IO data (refer Figure 1).

Weights were constructed according to:

w1 = 1 − |t1 − tt|
(t1 − t0)

( )
∗ (W ∗ (q̂1./qt))

w0 = 1 − |t0 − tt|
(t1 − t0)

( )
∗ (W ∗ (̂q0./qt))

where tt is the year to be estimated, w1 is the weighted ratio applied from the year t1 of

subsequent IO data. The scalar (or element-wise) division ./ of q1 the vector of value
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added in the year t1 and qt the vector of value added in the year tt is multiplied by a

concordance matrix W showing the relationship of the value added classification to

the input–output classification. The diagonal (here denoted by a hat) of the expanded

value added ratios is then taken for later matrix multiplication. The first term in the

weighting calculation provides a linear weighting of temporal distance, where the distance

from the years t1 or t0 to tt provides the relative weight. The calculation is repeated for

the preceding year t0 of IO data to give w0. Data on value added is taken from the

National Accounts data set (Australian Bureau of Statistics 2007b), with 18 distinct

industries.

The initial estimate is then calculated as:

Zt=W1*Z1+W0*Z0

Once the initial estimate is created, it is balanced against available data. From 1995

onwards, this includes purchaser price tables (Section 2.5.3) and National Accounts

data of value added and final demand (see Section 2.5.4) and according to row column

balances (see Section 2.5.1).

2.4 Constant Price Tables

An additional step was taken after the establishment of the time series of current price

tables in order to estimate constant price tables (see Figure 1 and Section 2.6). Price

indices were used on the current price input–output tables to give a first estimate of con-

stant price tables. These tables are not balanced – the application of product grouped price

indices, and specific indices for value added, creates non-additivity over rows compared

with columns, and due to chaining of indices within National Accounts data, the classic

problem of aggregate non-additivity presents itself (see Reich, 2008, for a more complete

overview). A choice can be made on whether to leave or reconcile these inconsistencies.

Reconciliation has been chosen in this work, for the following reasons: as the non-

additivity problem is a mathematical construct, a mathematical reconciliation seems

plausible; inconsistencies are generally well within the expected accuracy of the data

(Reich, 2008; Lenzen et al., 2010); from an end user perspective, having balanced row/
column sums, as well as consistency with aggregate economic variables, is desirable –

especially given the relatively large uncertainty of the applied price indices. This work

differs from the standard double deflation method (United Nations Department for

Economic and Social Affairs Statistics Division 1999), in that specific deflators are

used for components of value added, rather than calculating value added as a residual.

The choice reflects the desire to obtain a greater amount of direct information on quantity

changes in value added. The importance can be seen when analysing aspects such as

labour rates – utilising direct physical information should give much more stable compen-

sation of employee rates ($ per hour worked), than if compensation of employees is

calculated as a residual as is done in the double deflation method.

As per the tables in nominal values, constant price tables are balanced in three

steps. First, the application of appropriate price indices to the current price tables to

create an initial estimate; second the selection of appropriate aggregate data in real

values; third, the balancing of the initial estimate to both accounting constraints and

aggregate data.
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2.4.1. Price Indices

In order to deflate input–output tables from nominal to real values, price indices were

required. Ideally, price indices would be available for every input–output transaction.

However, in reality, the statistics bureaux collects price indices for only selected products

and for an even more select group of purchasers. It is hence assumed, that without better

available data, each individual purchaser is subject to the price index of its closest related

purchaser. In terms of products, price indices of individual products are assumed to be that

of its overarching product group where no individual indices exist. The price indices used

within this work are given in Table 3.

Two sets of price indices were constructed, one with emphasis on producer price indices

(PPI) (modified from Australian Bureau of Statistics, 2008d), and one with emphasis on

consumer price index (CPI) (modified from Australian Bureau of Statistics, 2008c). It

was assumed that producer price indices were most closely related to intermediate

demand and that the consumer price index was related most closely to final consumption.

Hence, producer price indices were used when available for the intermediate transactions

for a particular product group, and, if not available, consumer price indices were used; and

consumer price indices were prioritised for products of final demand when available.

2.4.2 Labour Index

The compensation of employees was deflated using an index of hours worked. As a first

step, employee numbers were estimated for one year by industry using data from the

Australian Business register (Australian Bureau of Statistics, 1998), which provides a

very high level of detail. These data were balanced to time series industry level data

(228 industry subdivisions) of the ABS from 1984–2008 (Australian Bureau of Statistics,

2008a). Employment prior to 1984 was recast from the 1984 data using aggregate industry

numbers for each year 1966–84 (Table 7 in Australian Bureau of Statistics, 2007a), scaled

to consistent total employment level figures from 1978–2008.

Labour data in terms of hours worked were estimated as a second step using the relative

amount of employment by industry data and the total hours worked by aggregated industry

(19 industries) (Table 11 in Australian Bureau of Statistics, 2008), since 1984. Prior to

1984, average weekly hours worked (Table 8 in Australian Bureau of Statistics 2007a)

were multiplied by total employment (Table 7 in Australian Bureau of Statistics 2007a)

TABLE 3. Applicable price indices used in this work.

Name
No of

products
Catalogue

no Years available

Consumer price index 144 6401 1972; 1980; 1989–2007
Producer price index – Manufacturing use 189 6427 1970; 1971; 1973;

1981–2007
Producer price index – Manufacturing demand 53 6427 1970;1996-2007
Producer price index – Construction output 7 6427 1996;1998-2007
Producer price index – Transport and storage 36 6427 1996;1998-2007
Producer price index – Property and Business 40 6427 1996;1998-2007
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for the same 19 industries. Consistent time series were available from 1978–2008 at the

aggregate level, and data were scaled to match these aggregates. Data from 1975–77 were

scaled at the same rate as 1978, as it is assumed that the differences are due to different

methodologies employed, and that this difference is consistent across each data set.

Indices were then calculated with respect to the 2005 base year. Constant price data

were constructed based on the current price data for 2005 and the labour indices. Price

indices for compensation of employees to convert between current and constant prices

are finally constructed as the ratio between the two measures.

2.4.3 Capital Index

Gross operating surplus was deflated using an index of capital services. A capital service

index is available for the market sector (Table 58 in Australian Bureau of Statistics,

2007b), and an index was estimated from the quantity of net capital stock in chain volume

measures for the non-market sector (Table 58 in Australian Bureau of Statistics, 2007b).

Constant price data were then constructed based on the current price data for 2005 and the

estimated capital indices. Price indices for gross operating surplus to convert between

current and constant prices are finally constructed as the ratio between the two measures.

2.4.4 Deflation

Indices were applied to all elements of the IO table. Price indices were applied to the

product purchased in the case of intermediate and final transactions (shown by pre-

multiplication), whilst value added was deflated using the capital and labour indices

where applicable. Price indices (PIs) have a 2005 base year.

PIs were applied to all elements of the basic price supply and use and transport margins.

As a first estimate, and subject to subsequent balancing with national accounts data, PPIs

were applied to all intermediate transactions, and CPIs were applied to final demand.

The form of the deflation follows the basic price table:

Ureal
1:m,1:n = diag PPI( ) ∗ U1:m,1:n

yreal
1:n,b = diag CPI( ) ∗ y1:n,b

subject to the above considerations. It should be noted, that whilst export and import price

indices were available, these were only available in aggregate, and hence the application of

actual constant price import and export data points as constraints provides a more accurate

deflation method.

The constraints applied to the constant price table were only available from National

Accounts data, and included Total Final demand by destination in purchaser’s prices includ-

ing data on exports; household final demand by product group; value added by industry

group; total taxes on products; and competing imports. See the Appendix for more details.

2.5. Constraints

Once the initial estimate was fully populated, constraints were applied across the full time

series. Two types of constraints were applied – accounting or balancing constraints (to
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ensure relationships such as gross output equals gross input); and data constraints (such as

from industry, commodity and national accounts data). A list of constraints cl was con-

structed, where the l refers to a subset of constraints rather than individual constraints.

cl is constructed alongside a concordance matrix G that links the constraint values cl

with the initial estimate z0. G is simply a sparse binary matrix showing the existence or

non-existence of a relationship between cl and each element of the vector z0.

2.5.1 Accounting Constraints

The full list of constraint data are included in the appendix. To briefly summarise, account-

ing constraints were included to ensure the balance between the expenditure and income

approaches to GDP; the column or industry output of supply and use tables; the row or

total product output of supply and use tables; the balance of imports including re-

exports; the re-distribution of margin tables to margin rows; and the balance of margin

tables, including re-exports.

For data constraints, three main data sets are utilised.

2.5.2 Benchmark Data

In years with available benchmark data, balanced input–output tables (in supply and use

format) as well as detailed commodity data for a subset of years were available (see

Table 2). There is a higher level of confidentiality in the product details data, as well as

a greater uncertainty in the data. The comparison (aggregation) to the square IO tables

is not always fully consistent. The commodity data and the industry level data of the

input output tables are used as constraints on the initial estimates of the IO system,

subject also to the accounting constraints above.

Classification Changes. Changes in classification have occurred frequently over the

time series in the benchmark IO tables. These changes are mainly due to the changing

importance of different products in the economy, as well as the introduction of new pro-

ducts (e.g. computers) non-existent in early years. As such, concordance matrices vary

from year to year. These classification changes confound temporal comparability at the

level at which the changes occurred. As such, when a classification change occurred, con-

cordance matrices were adjusted such that data were aggregated upwards. That is, if a

classification change made it impossible to have temporal consistency between two (or

more) products separately, then these products would be aggregated together, and the

sum of the products would be used as a constraint (provided there was then temporal con-

sistency between the sum of the products and the final classification, otherwise, further

aggregation of the source data was undertaken until consistency was ensured).

Methodological Changes. Numerous methodological changes have occurred over

time (Gretton, 2005). These have been dealt with more recently (from 1995) by estimating

relative rather than absolute change based on the consistent set of supply-use tables (see

below). Prior to 1995, most major changes occurred with the classification, and these

were dealt with as above. Other methodological changes were considered relatively

minor in terms of overall economic evolution and subject to mathematical balancing.
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2.5.3 Purchaser price Supply Use Data

A time series of Supply Use data in purchaser prices is available for Australia, updated

according to current methodology, at the conclusion of each year.1 The most recent

data available at the time were from 1994–95 to 2003–2004. The data are published as

a Supply table in basic prices and a Use table in purchases prices for 225 commodities

and 52 industries. In addition, there are commodity totals for imports, subsidies, taxes,

and for a breakdown into 10 margins. The time series of these source tables are all

under consistent classification and methodology.

The purchaser price data provided by the ABS were of sufficient deviation from the

benchmark input–output tables that a secondary treatment step was deemed beneficial.

Rather than using the absolute values depicted within the supply/use tables, growth

rates were constructed for each year relative to 2001–2002. 2001–2002 provides a

benchmark input–output table under current national accounts methodology. By

using ratios to the 2001–2002 values, and because the purchaser price Supply/Use

tables are all produced under consistent methodology, it is hence possible to circum-

navigate some of the methodological changes introduced during the 1990s in the

benchmark input–output data (handling of transport margins in particular). As the pur-

chaser price tables provide a slightly more aggregate dataset, but still for all products

under all margins, only if methodological differences were significant between the

application of the margins to receiving industries would errors remain. This relates

principally to the transport margins, where the 1994–99 benchmark input–output

tables were produced under a different method of invoice allocation. Gretton et al.

(2004) discuss this issue and provide some examples of the differences to be expected

under these years.

This approach can be summarised mathematically as follows. The growth rates are

calculated from the raw Supply/Use data Zt
SU at time t ¼ {1995,. . .,2004}, relative to

the raw Supply/Use data Z2002
SU at t ¼ 2002. This ratio is calculated element-wise for

each row i and each column j. The 2002 benchmark table Z2002
Bm is collapsed to the same

classification of the Supply/Use tables by a row or commodity concordance matrix

Wcomm
SU,Bm between the Supply/Use tables and the classification of the 2002 Benchmark

table, and a concordance matrix Wind
SU,Bm relating the columns of the Supply/Use tables

to the column classification of the 2002 benchmark table. The Hadamard or element-

wise product (denoted 8) is then applied between the collapsed 2002 benchmark table

(Wcomm
SU,Bm)′ × Z2002

Bm × Wind
SU,Bm and the growth rates.

Zt
SU∗ = (Wcomm

SU,Bm)′ × Z2002
Bm × Wind

SU,Bm 8 ∀i, j
Zt

SUi,j

Z2002
SU,i,j

( )

The adjusted Supply/Use table Zt
SU is then used as a constraint directly. This process of

creating adjusted tables avoids non-unitary coefficients in the balancing process compared

with using growth rates or some other form of ratio – with the same effect.

1 Currently under review by the ABS
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2.5.4 National Accounts Data

Finally, National Accounts aggregates are available across the whole time series in current

and constant prices. Constraints are hence constructed from all available data. The

applicable National Accounts data from 5204.0 includes data on value added by industry,

GDP, final demand by destination, competing imports, inputs to production by type,

household final demand by product, compensation of employees and gross operating

surplus by industry, and finally a dataset of agricultural inputs by industry and primary

or intermediate delivery. As previously mentioned, a separate section of the National

Accounts provides data in constant prices.

These 38 subsets of Constraints cl make up the full list of constraints c. c is constructed

for each year of the time series. These constraints act on the initial estimate as outlined in

the next section.

2.6 System Balancing

In order to update the initial estimate zt,0 at time t to our final estimate, a large amount

of information is used. Roughly half a million constraint values are used for the bench-

mark years. Standard updating procedures (RAS, etc) usually limit themselves to row

and column totals, ignoring additional information on purchases, types of final

demand and value added, etc. These procedures reduce variances in technological

change, matching previous flows to total production only. As such, these procedures

can produce flawed estimates when known changes in the economy have occurred. A

lot of effort in the literature has been expended on comparing different updating pro-

cedures and different target functions when limiting data inputs only to row and

column totals. The approach taken here is to leave fewer data to be estimated mathemat-

ically by including all applicable data in the balancing process. Such an approach is

consistent with the modification to RAS (Paelinck and Walbroeck, 1963; Allen, 1974;

Lecomber, 1975) to include constraints on known elements. It has been shown that

this approach leads to superior outcomes (Gilchrist and St Louis, 1999, 2004; Lenzen

et al., 2006), and considering the data situation in most countries, where data on

some sub-groups of flows are easier to come by than updated aggregate production

figures, it seems appropriate to include these data when possible (provided it does not

bias the balancing process).

The basis of the balancing process is that the initial estimate zt,0 will not necessarily

(and is unlikely to) satisfy the list of constraints ct. Hence, some type of balancing or

optimisation process is required in order to obtain zt,∗ such that:

zt,∗= zt,n ⇔ ct= Gt × zt,n

where zt,n is solved iteratively through balancing ct and Gt × zt,n (such that overall infor-

mation gain in zt,n is reduced). As mentioned, the most commonly used technique is that of

RAS (Stone and Brown, 1962). The modification from the basic bi-proportional approach

into a method that operates on subsets of flows, handles negative values and handles con-

straint incompatibility is documented elsewhere (Lahr and de Mesnard, 2004; Lenzen

et al., 2009), and its critical application in the form of KRAS to the Australian case is

also shown elsewhere (Lenzen et al., 2006, 2007, 2009).
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As is well known, RAS and variants are a form of mathematical optimisation process

where a logarithmic form is used to minimise a target function f that represents the distance

of zt,0 from zt,n (Bacharach, 1970):

f (zt,n, zt,0) =
∑

r

|zt,n
r |st

r ln(St
r)

with

St
r =

zt,0
i

e ∗ zt,n
r

See Lenzen et al. (2007) for the justification of the presence of the exponential, and de

Mesnard (1994) for investigation of equivalency. As the data are from different sources,

it is unlikely that the criteria ct ¼ Gt × zt,n are met.

We thus need also to minimise differences between ct and Gt × zt,n according to esti-

mates of the reliability of the constraints, which is called sct, assessed in this case through a

log-normal regression of known error values. The constraint balance is thus defined as:

ct = Gt × zt,n+at · sct

where a is a vector of the same size as sct and the dot shows scalar multiplication. The

target function is then modified to

f (zt,n, zt,0) =
∑

r

|zt,n
r |st

r ln(st
r) +

∑
r

|at
r|

The implementation of the approach in an iterative fashion is described in an alternate

paper (Lenzen et al., 2009) where convergence is said to be achieved once a threshold

is reached. In the iterative approach, at is advanced stepwise, where each step should

be chosen to be sufficiently small to approximate a linear function.

This balancing process was undertaken in stages for each year of the input–output system

(1975–2005). The intention of the balancing process was to adjust the system to the

hierarchy of data constraints – first to available data for the benchmark years, secondly

to consistent time series data from the supply use tables, and thirdly to the full series of

consistent national accounts data. This hierarchy is chosen so that temporal consistency is

most paramount (i.e. the national accounts is the most binding constraint set), and also

works from the most detailed constraint set upwards to the most aggregate constraint set.

Two options are available for establishing a hierarchy – either embedding the hierarchy

‘softly’ in the reliability term sct, or by enforcing the hierarchy through successive balan-

cing. The first approach was taken here for within the three main data sets, and the second

approach was taken for between the data sets. Within each dataset, a factor 10 preference

was established such that more aggregate data were given preference over less aggregate

data. This implies that in case of conflict, a constraint from a less aggregate data set would

move 10 times that of a constraint from a more aggregate data set (e.g. the 100 sector

tables versus the detailed commodity data at 1000 levels of detail). Obviously the more
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consistent the datasets, the more accurate the results, as the less balancing occurs between

the constraint data. Where constraints are from the same level of aggregation, they are

moved according to the error estimation. When implementing the balancing through the

hierarchy, only three different main data sets were used, making consecutive runs rela-

tively straightforward. The balancing process is called in exactly the same way for each

constraint set, albeit restricted to the particular subset of constraints ct for that dataset

(and also inclusive of all accounting constraints).

The constraint data ct contained positive, negative and zero constraints, as would be

expected in national account and input–output databases, and the matrix of flows Zt

also contains positive, negative and zero entries, again, as to be expected in an input–

output table. The generalisation of RAS is able to handle such variation; however,

whilst conflicting constraints of opposite sign can converge, the balancing of Zt is sign

invariant. A search algorithm was run through all constraint data for each year to identify

which elements of Zt were negative. Such an algorithm is not straightforward when data

are in various levels of aggregation, but the basic assumption employed was that all data

were positive unless a disaggregate constraint showed the flows of Zt to be negative.

Where a constraint showed Zt to be negative, all flows addressed by this constraint

were assumed negative, unless an even more disaggregate constraint showed some

flows to be positive, and so forth.

System convergence was helped greatly by correct sign definition of Zt. GDP had the

strongest affect of the balancing constraints due to its simultaneous affect on row/
column balances through the income and expenditure approaches of measuring GDP.

Convergence (occurring when differences between ct and Gt × zt,n are less than a speci-

fied threshold) was achieved after several thousand iterations of the KRAS algorithm

taking several hours of run time. For more general results on the performance of the

KRAS algorithm in these problems, the reader is referred to Lenzen et al. (2009).

3 STABILITY, PREDICTABILITY AND ACCURACY

Following the construction effort of the time series, this section gives an investigation into

how much change could be expected in input–output coefficients over time for Australia

and the accuracy of using an old input–output table compared with a new input–output

table. Three components are given – an analysis of stability of coefficients and multipliers

of the time series (Section 3.2); an analysis of predictability given known final demand or

value added (Section 3.3); and finally (Section 3.4), we return to the need for updated

tables – i.e. the expectant error from using dated tables.

It is important to note that this section does not seek to validate the methods and data of

Section 2. The temporal inconsistency of the source data makes a comparison between

source data and the final time series infeasible.

3.1. Input–Output Model Choice

The symmetric input–output model used in this section is calculated from the derived

supply and use tables under the industry technology assumption in industry by industry

format (United Nations Department for Economic and Social Affairs Statistics Division
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1999). In the Leontief (demand driven) model, gross output x is defined as the summation

of intermediate transactions T and final demand y. e is defined as the summation vector

(a vector of ones, size n × 1):

x = Te + y (1)

A is defined as the direct requirements or coefficients matrix, relating proportions of

intermediate usage to gross output (the hat defining diagonalisation):

A = T ∗ x̂−1 (2)

The Leontief model then redistributes to:

x = Ax + y (3)

x = (I − A)−1y (4)

where I is the identity matrix.

In the Ghosh (supply driven) model,

x′ = e′T + v′ (5)

B = T′∗̂x−1 (6)

x′ = x′B + v′ (7)

x′ = v′(I − B)−1
(8)

The dash represents transposition.

3.2 Stability

As a precursor to investigating the predictability of the Leontief and Ghosh models,

following Dietzenbacher and Hoen (2006, hereafter D&H), the stability of the coefficients

matrix is first investigated. Alternative methods to investigate stability include de

Mesnard’s work (de Mesnard 1997, 2004) on biproportional filters. As opposed to the

use of data in current price in D&H, here the deflated IO tables in constant prices

are used in order to exclude price-related fluctuations in the analysis.2

As per D&H, the coefficient of variation is utilised to see the change in model par-

ameters over time. The coefficient of variation cvar is defined as the average square

2 Note: the analysis was performed for both current and constant price data – with the conclusions drawn not

being affected, but as expected, less variation shown in the constant price data set. Owing to space limitations,

the results are not included here, but available from the author.
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root of the variance of a variable z over a time period t ¼ 1,. . ..p, i.e.:

cvarr =
					
varr

√

zr

(9)

where mean zr is calculated according to

zr =
∑

t=1: p zt
r

p
(10)

and variance is calculated according to

varr =
∑

t = 1 : p
(zt

r − zr)2
p

(11)

The coefficient of variation of the Leontief coefficients matrix A (Figure 2) shows the

changing technological relationships. As is expected, the greater relative change has

occurred within smaller coefficients. The magnitude of cvar is highly dependent on aggre-

gation level, such that the results presented have a much larger cvar than those found in

D&H with only 12 sectors. Comparing the Leontief model (Figure 2) with the Ghosh

model (Figure 3), there is greater variation in the Ghosh compared with the Leontief. In

fact, the average coefficient of the Ghosh model was some 25% larger than the Leontief

model, implying smaller primary inputs compared with final consumption, whilst the

median coefficient was 15% larger in the Ghosh model, implying a greater concentration

of inputs than outputs on average.

FIGURE 2. Coefficient of variation cvar of the Leontief coefficients matrix A.
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The coefficient of variation for both the Leontief and Ghosh models for large coeffi-

cients (coefficients greater than 0.1, or 10% of total inputs/outputs of the respective

sectors) is generally in the range of 0.5 to 1.0, meaning the standard deviation of the

coefficients across time are in the same order as the mean of the coefficients.

Of greater impact is the variation observed in multipliers rather than coefficients.

Whilst the direct relationships of A and B may change depending on the presence

or lack of presence of intermediate sectors, when mapping environmental flows, of

FIGURE 3. Coefficient of variation cvar of the Ghosh coefficients matrix B.

FIGURE 4. Coefficient of variation cvar of the Leontief multiplier matrix L.
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greatest interest is the variability in total (direct and indirect) relationships. Again, both

Leontief (Figure 4) and Ghosh (Figure 5) multipliers show increased variation in small

multipliers, with the Ghosh this time showing much greater variation in comparison

with the Leontief matrix. The cluster of multiplier values greater than 1 represents the

diagonals of the multiplier matrices, which interpret the direct linkage between final

consumption and primary inputs. As would be expected, the coefficient of variation of

these linkages is very minor. The relatively larger coefficients of variations of the

Ghosh model imply this model is less accurate when predicting important interrelation-

ships in the economy. The observed difference between the Ghosh and Leontief models

can be explained by a greater variation in primary inputs compared with final

consumption.

3.3 Predictability (Joint Stability of Supply and Demand Multipliers)

In this section, the predictability of multipliers of the Leontief and Ghosh production

functions is analysed. By predictability, the lead of D&H is followed in referring to

what Bon named ‘stability’. Again, in this and the ensuing section, tables in constant

prices are used in order to compensate for price effects.

In this study, the predictability of the Leontief model is assessed under known final

demand yt+1 by comparing known gross output xt with estimated gross output x̃t+1 calcu-

lated according to:

x̃t+1 = (I − At)−1yt+1 (12)

The assumption being tested is that the coefficients matrix A is reasonably constant over

time. For large variation in A, a large difference in x̃t+1 − xt will be evident.

FIGURE 5. Coefficient of variation cvar of the Ghosh multiplier matrix G.
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The predictability of the Ghosh model under known value added vt+1 is assessed by

comparing known gross output xt with estimated gross output x̃t+1 calculated according to:

x̃′
t+1 = v′

t+1(I − Bt)−1 (13)

In assessing predictability, five tests are used to determine the differences between the

estimated gross output and the known gross output. Each test behaves slightly differently,

and no test is deemed conclusive (Butterfield and Mules, 1980). Refer to Lenzen et al.

(2009) for the source of these measures:

The relative arithmetic mean of absolute differences

AMAD =

∑
i

xt i − x̃t i| |∑
i

xt i

(14)

The relative geometric mean of absolute differences

GMAD =

															∑
i

xt i − x̃( )2t i

√
							∑

i

x2
t i

√ (15)

The Isard/Romanoff Similarity Index which has been used as a ‘Dissimilarity Index’ by

Thissen and Löfgren (1998) and Lenzen et al. (2009)

SIM =

∑
i

xt i − x̃t i| |
xt i + x̃t i

N2
(16)

The arithmetic mean of relative differences

AMRD =

∑
i

xt i − x̃t i| |
xt i

N2
(17)

The relative mean square error

RMSE =
																							
1

N

∑
i

xt i − x̃t i( )
xt i

( )2
√

(18)

One of the main differences is in the weighting of the differences, whether the difference is

relative to the single variable or to the sum over the variables. The RMSE is relative to the

single variable, and is more influenced by small flows. This is less than ideal in an input–

output system when small flows have less importance. It is included here for comparability

to D&H.
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Average results (Tables 4 and 5) are in line with D&H and Bon, with the Leontief and

Ghosh results being comparable in magnitude of error. A noticeable year is 1995, with

larger errors evident in this year across both models. This is the first year the Time

series of Supply/Use tables in purchaser prices was published by the ABS, and mark a

significant change in methodology.

Figures 6 and 7 present the breakdown by industry, with sectors arranged from 1 to 109

(primary industries on the left and tertiary industries on the right). Like D&H, there

appears to be less variation in the Leontief model in the more established primary

sectors, and considerably more variation in the Leontief model in tertiary sectors. This

result, whilst consistent with D&H is opposite to the findings of Bon. D&H’s explanation

was that they were studying post-war reconstruction. The same explanation does not

apply to this study, although there has been considerable change away from agricultural

industries and to knowledge services in Australia.

TABLE 4. Predictability of Leontief coefficients, 197622006.

AMAD GMAD SIM AMRD RMSE

1977 6% 1% 4% 8% 10%
1978 6% 1% 4% 7% 9%
1979 9% 3% 5% 9% 13%
1980 9% 2% 5% 10% 20%
1981 6% 2% 3% 5% 9%
1982 6% 1% 4% 7% 12%
1983 4% 1% 2% 4% 7%
1984 11% 3% 6% 12% 19%
1985 3% 1% 2% 4% 7%
1986 3% 1% 2% 3% 6%
1987 10% 3% 4% 8% 11%
1988 4% 1% 2% 4% 6%
1989 3% 1% 2% 4% 5%
1990 10% 4% 5% 9% 15%
1991 10% 4% 4% 11% 37%
1992 3% 1% 2% 4% 5%
1993 6% 2% 2% 5% 8%
1994 9% 3% 5% 10% 19%
1995 19% 4% 12% 32% 33%
1996 6% 1% 4% 7% 10%
1997 5% 1% 4% 9% 21%
1998 5% 1% 3% 6% 8%
1999 5% 1% 3% 6% 8%
2000 6% 1% 4% 8% 11%
2001 3% 1% 2% 4% 6%
2002 3% 0% 2% 5% 8%
2003 3% 0% 3% 5% 9%
2004 2% 0% 2% 4% 5%
2005 7% 1% 5% 9% 15%
2006 5% 1% 3% 6% 6%

Average 6% 2% 4% 8% 12%
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3.4 Analysis of Temporal Predictability

In the previous section, the predictability of xt was calculated from Lt21. In essence, the

gross output was calculated given current final demand and the previous year’s technologi-

cal structure. A common occurrence, however, is that there is often a greater lag between

available input–output tables and current final demand. Analysts often cite the stability of

technological coefficients as justification for using dated structural data. In this section,

this assumption is analysed for Australia for 2005 final demand (again using constant

price tables). The series of equations investigated are represented by:

∀t=1975:2005{x̃t = (I − At)−1yt=2005} (19)

TABLE 5. Predictability of Ghosh coefficients, 197622006.

AMAD GMAD SIM AMRD RMSE

1977 8% 1% 4% 8% 9%
1978 7% 1% 4% 8% 13%
1979 5% 3% 3% 6% 9%
1980 6% 2% 3% 6% 12%
1981 6% 2% 3% 5% 7%
1982 5% 1% 3% 5% 7%
1983 4% 1% 3% 5% 10%
1984 8% 3% 5% 9% 13%
1985 3% 1% 2% 3% 4%
1986 2% 1% 1% 3% 4%
1987 4% 3% 2% 5% 7%
1988 3% 1% 2% 4% 6%
1989 3% 1% 2% 4% 5%
1990 7% 4% 4% 9% 14%
1991 12% 4% 6% 14% 17%
1992 4% 1% 2% 4% 6%
1993 4% 2% 3% 5% 7%
1994 9% 3% 5% 11% 18%
1995 20% 4% 11% 26% 31%
1996 6% 1% 4% 8% 12%
1997 6% 1% 4% 8% 11%
1998 5% 1% 4% 7% 12%
1999 4% 1% 2% 5% 9%
2000 6% 1% 5% 8% 14%
2001 4% 1% 3% 5% 8%
2002 3% 0% 3% 6% 15%
2003 4% 0% 3% 7% 10%
2004 3% 0% 2% 5% 7%
2005 6% 1% 5% 10% 14%
2006 5% 1% 3% 7% 7%

Average 6% 2% 3% 7% 11%
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The measure of AMAD is used which gave one of the better representations in Section 0

to map the evolution of x̃t

AMAD =

∑
i

x2005,i − x̃t i

∣∣ ∣∣∑
i

x2005,i

(20)

Figure 8 presents the AMAD between the estimated gross outputs x̃t to 2005 gross

output x2005.

As expected, gross output estimates shown in Figure 8 are poor at a greater distance

from the benchmark year (2005). A general trend (R2 ¼ 0.89) is found between the

temporal distance from the benchmark and the measure of error. Using previous or sub-

sequent year data gives an error in the range of 427%, as previously examined in

Table 5.

Most statistical agencies have a lag time of three–four years in producing IO tables

(Australia currently has a three year lag, the UK’s last published tables are from 1995).

From the results presented here, it would be expected that using the dated tables would

FIGURE 7. RMSE of Ghosh coefficients across time series.

FIGURE 6. RMSE of Leontief coefficients across time series.
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give an error of absolute differences in the range of 5–15%. However, as the measures

employed present only the absolute error in industrial output, the error may be reduced

if the uncertainty is stochastic (only somewhat likely, as we are seeing economic evol-

ution) and normally distributed.

4 CONCLUSIONS AND DISCUSSION

This paper describes the construction of a time series of Australian input–output tables. A

range of detailed commodity data were utilised in order to estimate a temporally consistent

set, containing 344 sectors. Initial estimates were generated using an exponential

regression, and were subsequently balanced by applying a range of accounting constraints

and data sources. Tables were constrained firstly by published IO data (17 tables over

30 years), secondly by adding in unpublished supply/use data (10 recent years), and

finally by including National Accounts data (all years). This enabled a consistent time

series to be constructed, whilst incorporating the highest level of detail from published

and unpublished IO tables in order to delineate environmentally important processes.

The stability and predictability of input–output coefficients are important consider-

ations when using input–output data. Often the analyst has available current final expen-

diture data, but older data on technical coefficients. Knowledge of the evolution of

technical coefficients can help inform the validity of modelling exercises. Hence, in this

paper, the characteristics of the temporal model developed were explored along the

lines of Dietzenbacher and Hoen (2006) in order to give comparability for the Australian

case. To begin with, the issue of stability of coefficients and multipliers was investigated

for the Leontief and Ghosh models of supply/demand. As expected, there is considerably

more variation in smaller coefficients than large coefficients. Multipliers were generally

found to be more stable than coefficients. The interpretation from this finding is that

adjustments to individual components of production chains are greater than adjustments

FIGURE 8. Evolution of gross output estimates x̃ compared to real x2005.
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to the corresponding full production chains, so some substitution of intermediate inputs is

occurring.

A comparison between the Ghosh and Leontief models showed superior performance of

the Leontief model, with the Ghosh being subject to increased variation in some large

coefficients and multipliers. Hence, in Australia, there has been more stability in

demand side components than supply side components.

The predictability of the models was then examined under updated final demand or

primary input components. The model results showed errors in the 0215% range depend-

ing on choice of metric. The average root mean square error of 11212% was higher than

found in Dietzenbacher and Hoen (2006), most likely due to the significantly higher

disaggregation level used in this study. Using error measures that weigh out large

changes in small values, the errors were a more reasonable 2–8%.

No significant difference between the two models could be discerned at the whole

economy level. Whilst differences were observed in model performance at the industry

level, no reliable trends were found for a maturing economy. This is in line with

Dietzenbacher and Hoen (2006), but contradictory to Bon’s findings.

The predictability of the input–output model over varying time scales was also inves-

tigated. The results showed the importance of using up-to-date coefficient matrices, with

weighted error measurements subsiding from almost 35% on a 30 year time scale to nearer

5% for previous year tables.
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APPENDIX

The accounting or balancing and data constraints of the input–output system are defined in

this appendix. The notation used is to help show the links between the data points and the

final input–output system (see Section 2.1.3). It is the constraint list c and the concordance

matrix G that are constructed (see Section 2.6) (using the indexing vector described in

Section 2.1.3) in the preparation of these constraints.

Accounting Constraints

First, define GDP relationships, by income approach 2 summation of value added (gross

operating surplus, compensation of employees, taxes on production) and taxes on

products:

C1 ⇒
∑

i=m+1,m+a

∑
j=1,n+b

Uij − gdp = 0

and expenditure approach – summation of domestic final demand and exports (including
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taxes less subsidies), minus imports (excluding re-exports):

C2 ⇒
∑

i=1,m+a

∑
j=n+1,n+b

Uij −
∑

i=1,m

∑
j=1,n

Mij

( )
− gdp = 0

Match column totals of supply, use and imports matrices:

C3 ⇒
∑

i=1,m

Vi,1:n −
∑

i=1,m+a

Ui,1:n+
∑

i=1,m

Mi,1:n

( )
= 0

and Match row totals of supply, and use matrices

C4 ⇒
∑
j=1,n

V1:m,j −
∑

j=1,n+b

U1:m,j = 0

Supply of imports is equal to competing imports into production (PIIMP)

C5 ⇒
∑

j=1,n+b

M1:m,j − U′
PIIMP,1:n = 0

And for re-exports (REX),

C6 ⇒
∑

i=1:m

Mi,n+1:n+b − UPIIMP,n+1:n+b = 0

Net taxes (less subsidies) on products are the aggregation of the respective tables on

taxes, including taxes on re-exports.

C7 ⇒
∑

k=1:4

∑
i=1:m+1

Tk
i,1:n+b − UTax,1:n+b = 0

Net margins are not simply the aggregation of the d margins tables, but the redistribu-

tion of the margins. Using a concordance vector Wk for k ¼ 1:d margins, which maps

margin table totals to margin rows of P.

C8 ⇒ P1:m,1:n+b −
∑

k=1:d

Pk
1:m,1:n+b −

∑
k=1:d

Wkx
∑

i=1:m

Pk
i,1:n+b = 0

Further, margin commodities are 100% related to each margin (i.e. there are no non-

margin components):

C9 ⇒ ∀
k=1:d

Wk × P1:m,1:n+b = 0

According to Australian input–output tables (Australian Bureau of Statistics, 2008),

margins on re-exports are excluded from each margin commodity and included in the
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total. i.e.

C10 ⇒ PREX,1:n+b =
∑

k=1:d

Pk
REX,1:n+b

National accounts data are mainly available in purchases prices, hence, a Use table in

purchases prices is constructed

C11 ⇒ UPP
1:m,1:n+b − U1:m,1:n+b +

∑
k=1:4

Tk
1:m,1:n+b + P1:m,1:n+b

( )
= 0

Due to varying aggregation levels of data sources used, the Supply matrix is kept as

homogeneous as possible. Hence, for the respective industry data, a concordance matrix

Wcomm,ind mapping commodities to industry units is used such that:

C12 ⇒ V1:m,1:m −
∑
j=1,n

V1:m,j ∗ Wcomm,ind
1:m,j = 0

Benchmark Data

The 17 years of published IO data are referred to as the ‘benchmark’ years. In these years,

the data available includes balanced input–output tables as well as commodity data. Some

conflicts are evident in the commodity data and within the input–output tables such that

the system whilst close, is not fully in equilibrium. The commodity data and the industry

level data of the input output tables is used as constraints on the initial estimates of the IO

system, subject also to the accounting constraints above. Hence, ZBm is used to represent a

component of the IO system (such as U, P, T, V) in original format from the benchmark

years, and Wn,ind
Bm to represent the concordance matrix from the benchmark data to the

respective table in the estimated IO system (Z∗). A dash ’ refers to the transpose.

For square systems, such as the transactions of the Supply or Use matrix, where the

classification of the products m is equal to that of industries n:

C13 ⇒ Z
∗m,n
i,j = Wn,ind

Bm × Zind,ind
Bm,i,j × Wn,ind

Bm

( )′
For rows (e.g. Value Added):

C14 ⇒ Z∗a,n
i,j = Za,ind

Bm,i,j × Wn,ind
Bm

( )′
For columns (e.g. Final Demand):

C15 ⇒ Z∗m,b
i,j = Wn,ind

Bm × Zind,b
Bm,i,j

And for commodity data (Australian National Accounts, Input–output Tables (Product

Details), Cat. no. 5215.0.55.001), using a concordance matrix Wm,comm
Bm to map between

estimated product data and benchmark commodity data Zcomm,b
Bmi,j . As benchmark

commodity data are only available by row, with columns still in industry classification,
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the benchmark data Zcomm,b
Bmi,j is pre-multiplied by the commodity concordance, and post-

multiplied by industry concordance:

C16 ⇒ Z∗m,n
i,j = Wm,comm

Bm × Zcomm,ind
Bm,i,j × (Wn,ind

Bm )′

Categories of final demand (or other columns) are simply pre-multiplied:

C17 ⇒ Z∗m,b
i,j = Wn,comm

Bm × Zcomm,b
Bmi,j

There is no additional row data for value added at the commodity level.

The constraints C13 – C17 are calculated for each available table – i.e. for each of the

Supply, Use, Imports, Margins and Taxes tables.

Purchaser Price Supply Use Data

Similar to the benchmark data, constraints are constructed using an industry Wn,ind
SU and

commodity Wm,comm
SU concordance matrix on the adjusted supply use data in purchaser

prices Zcomm,ind
SU∗,i,j

C18 ⇒ Z∗m,n
i,j = Wm,comm

SU × Zcomm,ind
SU∗,i,j × Wn,ind

SU

( )′
C19 ⇒ Z∗a,n

i,j = Za,ind
SU∗,i,j × Wn,ind

SU

( )′
C20 ⇒ Z∗m,b

i,j = Wm,comm
SU × Zcomm,b

SU∗,i,j

The Supply/Use constraints are constructed on the non-confidential points of the

Supply and Use tables, the totals (row/column) of the Supply and Use tables and on

the row totals of the imports, margins and taxes tables.

National Accounts Data

Finally, National Accounts aggregates are available across the whole time series. Con-

straints are hence constructed from all available data. The applicable National Accounts

data from 5204.0 includes the following.

Value Added by 18 industries:

C21 ⇒
∑

i=m+1,m+a−1

Ui,j = Qec,NA
1:18 × Wn,18

NA

( )′
where

∑
i=m+1,m+a−1

Ui,j is the value added by industry (excluding taxes less products from

classification of primary inputs a), Qec,NA
1:18 is the value added by industry in the National

Accounts classification (18 sectors), and Wn,18
NA

( )
is the concordance matrix between the

18 sectors of the National Accounts and the ISAPC.
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GDP (1 data point)

C22 ⇒ gdp = gdpNA

Total Final demand by destination (seven data points), in purchases prices

C23 ⇒
∑
i=1:n

U
pp
i,m+1:m+b = yT,NA

1:7

where the sum over final demand rows
∑

i=1:n

U
pp
i,m+1:m+b is equal to final demand category

totals of the national accounts yT,NA
1:7 .

Total competing imports of the National Accounts MT,NA (one data point) is the sum

over all imports

C24 ⇒
∑

i=1:m

∑
j=1,n+b

Mij = MT,NA

Total inputs into production by type (Compensation of employees, Gross Operating

Surplus, Taxes on products, Taxes on production) Qec,NA
1:a , four data points.

C25 ⇒
∑

j=1:n+b

Un+1:n+a,j = Qec,NA′

1:a

Household final demand in purchases prices is provided by 38 commodities in the

National Accounts yNA
1:38,1, and relates estimated final demand U

pp
1:n,m+1 by the concordance

matrix Wn,38
y,NA:

C26 ⇒ U
pp
1:m,n+1 = Wn,38

y,NA

( )
× yNA

1:38,1

Compensation of employees by industry (17 data points) is calculated similarly:

C27 ⇒ Um+1,1:n = Qec,NA
1,1:17 × Wn,17

Q,NA

( )′
And for gross operating surplus by industry (17 data points)

C28 ⇒ Um+2,1:n = Qec,NA
2,1:17x Wn,17

Q,NA

( )′
Agricultural income in the National Accounts (eight data points) is defined in more

detail for gross production:

C29 ⇒
∑

i=1:m+a

U
pp
i,1:n = U

pp,NA
Ag,T,1:8 × Wm,8

Ag,NA

( )′
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intermediate inputs:

C30 ⇒
∑

i=1:m

U
pp
i,1:n = U

pp,NA
II,1:8 × Wn,8

Ag,NA

( )′
value added:

C31 ⇒
∑

i=n+1:n+a−1

Ui,1:n = Qec,NA
VA,1:8 × Wn,8

Ag,NA

( )′
taxes on products:

C32 ⇒
∑

i=m+a

Ui,1:n = Qec,NA
TAX,1:8 × Wn,8

Ag,NA

( )′
compensation of employees:

C33 ⇒ Um+1,1:n = Qec,NA
COMP,1:8 × Wn,8

Ag,NA

( )′
Constant Price Data

The constraints applied to the constant price table were only available from National

Accounts data, and included Total Final demand by destination (seven data points), in

purchaser’s prices and including data on exports:

CReal
34 ⇒

∑
i=1:n

U
pp,real
i,n+1:n+b = yT,NA

1:7

Constant price household final demand is available for 17 categories in the National

Accounts yNA
1:17,1, and is related to estimated final demand U

pp,real
1:n,m+1 by the concordance

matrix Wn,17
y,NA:

CReal
35 ⇒ U

pp,real
1:n,m+1 = Wn,17

y,NA

( )
× yNA

1:17,1

Constant price value added of 36 categories is similarly implemented:

CReal
36 ⇒

∑
i=m+1:m+a−1

Ureal
i,1:n = Wn,36

y,NA

( )
× Qec,NA

1:36VA′

Total taxes on products:

CReal
37 ⇒

∑
i=m+a

Ureal
i,1:n = Qec,NA

TAX

210 R. WOOD

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
1:

57
 2

1 
A

ug
us

t 2
01

7 



Total competing imports of the National Accounts MT,NA (1 data point) is the sum over

all imports

CReal
38 ⇒

∑
i=1:m

∑
j=1,n+b

Mreal
ij = MT,NA

It should be noted, that whilst export and import price indices were available, these were

only available in aggregate, and hence, the application of actual constant price import and

export data points as constraints provides a more accurate deflation method.
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