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Summary

Industrial assets or fixed capital stocks are at the core of the transition to a low-carbon
economy. They represent substantial accumulations of capital, bulk materials, and critical
metals. Their lifetime determines the potential for material recycling and how fast they
can be replaced by new, more efficient facilities. Their efficiency determines the coupling
between useful output and energy and material throughput. A sound understanding of
the economic and physical properties of fixed capital stocks is essential to anticipating
the long-term environmental and economic consequences of the new energy future. We
identify substantial overlap in the way stocks are modeled in national accounting, dynamic
material flow analysis, dynamic input-output (I/O) analysis, and life cycle assessment (LCA)
and we merge these concepts into a common framework for modeling fixed capital stocks.
We demonstrate the usefulness of the framework for simultaneous accounting of capital
and material stocks and for consequential LCA. We apply the framework to design a
demand-driven dynamic I/O model with dynamic capital stocks, and we synthesize both the
marginal and attributional matrix of technical coefficients (A-matrix) from detailed process
inventories of fixed assets of different age cohorts and technologies. The stock modeling
framework allows researchers to identify and exploit synergies between different model
families under the umbrella of socioeconomic metabolism.
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Introduction

Fixed Capital Stocks and the Transition to a New
Energy Future

The transition to a sustainable energy future (IEA 2010) is
shaped by many factors, such as the availability and timing of
new, more efficient technologies (IEA 2010), potential scarcity
of mineral resources (Graedel et al. 2012), and the speed at
which existing assets can be replaced (Davis et al. 2010). A
central and novel challenge is that a multitude of new or im-
proved technologies, which were developed and tested on a
small scale, need to replace existing assets over a long time, in
all world regions, and on a large scale. To understand how to
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mitigate climate change and promote human development at
the same time requires models that integrate physical and tech-
nological aspects of new energy technologies with economic and
social aspects of the distribution of their benefit within society.
Industrial ecology (IE) principles and the concept of socioe-
conomic or anthropogenic metabolism (Baccini and Brunner
1991; Fischer-Kowalski and Weisz 1999) represent a framework
for this integration. An important example of model integration
within that framework is the combination of environmentally
extended input-output (I/O) analysis (IOA) and material flow
analysis (MFA) to better understand the coupling between the
physical and monetary layer of industrial systems (Duchin 1992,
2009; Kytzia et al. 2004).
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Important examples of combining IOA and MFA include
the waste I/O (WIO) model (Kondo and Nakamura 2002),
WIO-MFA (Nakajima and Nakamura 2006), economically ex-
tended MFA (Kytzia et al. 2004), different versions and amend-
ments of physical and monetary I/O analysis (Duchin 2009;
Weisz and Duchin 2006; Hubacek and Giljum 2003; Dietzen-
bacher et al. 2009; Giljum and Hubacek 2009; Wood et al.
2009), hybrid supply-and-use tables (Schmidt and colleagues
2010), and IOA with mixed units (Hawkins et al. 2007). All
these approaches are static models; they represent snapshots of
the industrial metabolism recorded over a certain accounting
period, typically 1 year. They cover the flows of materials and en-
ergy through industrial processes and their distribution among
industry and end users, but not the stocks or fixed assets, such
as production equipment, buildings, infrastructure, or vehicles.
Pauliuk and Müller (2014) compile a systematic overview of the
role of stocks in socioeconomic metabolism. They identify four
properties of industrial assets, or fixed capital stocks, that need
to be understood when developing strategies for a new energy
future:

Capital containers and resource repositories: Low-carbon en-
ergy technologies are capital and material intensive and the
impact of building and maintaining these installations can
be much higher than the impact associated with their use
(Frischknecht et al. 2007).

Dynamics determiners: The service lifetime of industrial in-
stallations determines how quickly they can be replaced and
thus how quickly new energy technologies can penetrate (Davis
et al. 2010). The development of in-use stocks over time de-
termines future resource demand and the potential for material
recycling (Vidal et al. 2013; Davis et al. 2010).

Consumption couplers: The I/O structure of an industrial sec-
tor is determined by the respective “production recipes” of all
the factories and installations it comprises. The turnover and
aging of the productive capital stock determines how the input
structure of the sector changes over time (Davis et al. 2010).

State of the Art of Dynamic Capital and Material
Stock Modeling in National Accounting, Material Flow
Analysis, and Input-Output Analysis

Dynamic modeling of capital stocks has a long tradition
in economic accounting, and we refer to the Organization for
Economic and Cooperative Development (OECD 2009) for
an overview. Many statistical offices apply a dynamic capital
stock model called the perpetual inventory method (PIM),
which tracks the different age cohorts of capital investment
over time and determines the retirement of capital assets in
different economic sectors according to their physical service
lifetimes (OECD 2001, 2009). Here, fixed capital assets are seen
as capital containers. On the physical side, Baccini and Bader
(1996), van der Voet and colleagues (2002), and Müller (2006)
describe and apply dynamic models of material stocks (resource
repositories) using age cohorts. Müller (2006) introduces the
stock-driven model, where inflows and outflows of products to
build up and maintain in-use stocks are determined from ex-

ogenous time series for total stock size and the service lifetime
of the different age cohorts (in-use stocks as dynamics deter-
miners). Dynamic models of stocks as consumption couplers
are state of the art in models of the vehicle fleet (Wang 1999;
Melaina and Webster 2011; Pauliuk et al. 2012) and the build-
ing stock (Kohler 2006; Sandberg and Brattebø 2012; Pauliuk
et al. 2013).

In dynamic I/O analysis, investments into capital stocks or
research and development are considered a prerequisite for ex-
panding production capacity or increasing factor productivity.
The capital stock itself, as well as its dynamics and impact on
technical coefficients, are often not considered, however. Ex-
amples include Leontief (1953), Vogt and colleagues (1975),
Lange (1980), ten Raa (1986), Los (2001), and Hoekstra and
Janssen (2006). Duchin and Szyld (1985) propose a generaliza-
tion of the model used by Leontief (1953), which ensures the
existence of a solution with positive industry output by using
exogenous capacity estimates based on historic trends. Leontief
and Duchin (1986) apply this model to estimate the impact of
future labor automation on the A-matrix of the U.S. for 1990
and 2000. To derive the change of the A-matrix over time,
they do not use a dynamic stock model of productive assets of
different age cohorts, as first pointed out by Carter (1963). In-
stead, they estimate the future technical coefficients by directly
modifying them according to assumptions on future productiv-
ity gains. The model developed by Duchin and Szyld (1985)
neglects dismantling and demolishing, which are crucial when
modeling a replacement of industrial stocks during a metabolic
transition. The distinction between maintenance (applied to
existing facilities) and replacement (new assets that replace old
ones) is not made. The model of Duchin and Szyld (1985) in-
spired other scholars: Pan (2006) and Ryaboshlyk (2006) adjust
the technical coefficients in their model according to the share
of new and existing industries within a sector. Pan (2006) ap-
plies rates for depreciation and obsolescence of assets to the
capital stock to model how it ages with time and allows assets
to be idle to avoid overproduction in times of stalling demand.
Pan’s model does not differentiate between different age co-
horts; depreciation, obsolescence, and idleness rates are applied
to the entire capital stock as a unit. This capital stock model re-
sembles what is called a “leaching model” in dynamic MFA (van
der Voet et al. 2002). Idenburg and Wilting (2000) consider age
cohorts and fixed economic lifetime to model retirement of ex-
isting assets in their version of the Duchin and Szyld (1985)
model. They calculate the overall A-matrix as synthesis of the
A-matrices of the different age cohorts. Lennox and colleagues
(2005) specify the lifetime distribution of industrial assets to
model their turnover and they consider possible underutiliza-
tion of productive capacity. They use inventory data for the
material intensity of specific energy conversion technologies to
determine the total material demand from new installations. A
detailed discussion of all approaches is given in the Supporting
Information on the Web.

The review shows two things: (1) The stock models used
in capital accounting, dynamic MFA, and dynamic IOA
seem to converge toward an age-cohort–specific description of
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technological or economic attributes of fixed assets. (2) There is
no dynamic modeling framework, however, that includes both
capital and material stock dynamics, that includes all life cycle
stages of industrial assets, and that consistently distinguishes
between different age cohorts of industrial assets or technology.

Scope and Research Questions

We believe that better exploitation of synergies between
different model families under the umbrella of socioeconomic
metabolism may allow researchers to work more efficiently and
may increase the validity and visibility of the model results. In
this article, we develop a harmonized accounting and modeling
framework to study industrial capital stocks in their role as
capital containers, resource repositories, dynamics determiners,
and consumption couplers. This framework can improve models
that assess the economic and physical aspects of the transition
to a sustainable energy future.

The article has four parts:

1. We establish a connection between dynamic modeling of
capital stocks (PIM) and material stocks (dynamic MFA).

2. We propose a generic way of modeling the buildup, main-
tenance, and dismantling of industrial assets.

3. We derive a general dynamic I/O model based on our
framework for accounting capital stocks and investment
flows and discuss its potential application in IE.

4. The general framework of fixed capital stocks can provide
useful insights into other fields of research, and we pro-
vide two examples: consequential life cycle assessment
(CLCA) and potential synergies between IE and the in-
tegrated assessment modeling community.

Dynamic Modeling of Economic and
Physical Aspects of the Fixed Capital
Stock

First, we list all indices and system variables at their maxi-
mum level of specification (table 1). The meaning of the vari-
ables is explained when they appear in the text for the first
time. By summing up over indices, one obtains more aggre-
gated arrays, for example, C(t, i, J ) = ∑

t ′≤t C(t, t ′, i, J ). This
summation is not always made explicit in the text.

In economic accounting, two types of fixed capital stock are
distinguished (figure 1, right). The gross capital stock C is the sum
of all historic investments into assets that are still in operation
at the time of measurement, revalued at current purchasers
prices of equivalent new capital goods (OECD 2009). The gross
fixed capital stock C in an economy at time t consists of goods
or products i that can be specified by the industrial sector J
where they reside, their year of production t’, and their physical
lifetime τC in that industry (equation (1)):

C = C(t, t ′, i, J )
τC = τC(t ′, i, J ) (1)

The net capital stock comprises the same productive assets,
but determines their value based on the current market value
for the assets of different age cohorts (OECD 2001, 2009). The
fixed capital stock contributes to the production process; this
contribution is called capital service (OECD 2009). It has both
a value and a volume aspect.

The value aspect is modeled by the consumption of fixed
capital, CFC, which is the diminishment of the net capital stock
of existing assets between 2 consecutive years. The consumption
of fixed capital does not have a direct physical counterpart
because it relies on assumptions on future revenue, discount
rates, or depreciation schemes.

The volume aspect or physical aspect of an accumulation
of fixed capital in a certain sector can be represented by its
production capacity G. This capacity is a property of indus-
trial installations, which, in turn, consist of different compo-
nents and products. The lifetime τG of an installation differs
from the physical lifetimes τC of the capital goods it is made
of, because the different components of the installation, such
as buildings, machines, or control equipment, are maintained
or replaced at different intervals. Moreover, the lifetime τA

of the net capital goods in the asset is derived from account-
ing principles, and it can differ from their physical lifetime τC

(OECD 2009).
To build up or maintain production capacity, a certain frac-

tion of a country’s final output y needs to be invested into in-
dustrial capital each year. This investment flow, together with
investments into dwellings, is termed gross fixed capital forma-
tion (GFCF) (European Commission 2008). The GFCF speci-
fies the products that are invested, but not the industrial sector
in which the investment occurs. A more specific breakdown
of investments by target industrial sector J is represented by
the investment matrix K(t,i,J) (European Commission 2008)
(figure 1, left). The flows of goods in K are invested to build up,
maintain, or demolish production capacity. A general break-
down of K therefore consists of three parts: KB is associated
with constructing new assets; KR with maintaining existing
assets; and KD with dismantling and demolishing obsolete or
retired assets (equation (2)).

K = K B + K R + K D (2)

The lifetime distribution function λC(t,t’,i,J) denotes the
probability that the asset of product i in industry J acquired in
year t’ leaves the fixed capital stock in year t with an age of
t-t’. When the different age cohorts of capital investment are
recorded, the gross capital stock C(t,i,J) can be calculated from
deflated past investments and λC (equation (3)). The term in
brackets denotes the fraction of the original investment that
is still part of the fixed capital stock. This dynamic model of
the capital stock is called PIM (European Commission 2008;
OECD 2009).

C(t, i, J )=
∑
t ′≤t

K (t ′, i, J ) ·
(

1−
∑

t ′≤t ′′≤t

λC(t ′′, t ′, i, J )

)
·T (3)

106 Journal of Industrial Ecology



R E S E A R C H A N D A N A LYS I S

Table 1 Overview of the variables used in the system, their symbols, and respective units

Index name and description Symbol Domain
Model time t Case specific
Age-cohort or vintage t’ Same as model time
Product or commodity category i,j,k, . . . 1 . . . NProd

Industry category or sector I,J,K, . . . 1 . . . NInd

Material type (good or substance) m 1 . . . NMat

Name and description, general variables Symbol and dependency Unit
Accounting period and discrete model increment: 1 year T yr
Total output, by commodity or by industry, from I/O model x(t,i), x(t,J,t’) $/yr
Final demand, exogenous y(t,i) $/yr
Final demand without investments in industrial assets, exogenous ỹ(t, i ) $/yr
Gross capital stock (year, age-cohort, product, industry) C(t,t’,i,J) $
Remaining original production capacity (year, age-cohort, industry) G0(t,t’,J) $/yr
Effective (nominal) production capacity, measure of capital service G(t,t’,J) $/yr
New production capacity in sector J installed in year t’ Gin(t’,J) $/yr
Production capacity in sector J built in year t’ and retiring in year t Gout(t,t’,J) $/yr
Gross fixed capital formation GFCF(t,i) $/yr
Investment matrix (GFCF broken down by target sector) K(t,i,J) $/yr
Investment matrix for building up new capacity KB(t,i,J) $/yr
Investment matrix for maintaining existing capacity KR(t,i,J) $/yr
Investment matrix for disposing of retiring capacity KD(t,i,J) $/yr
Lifetime and probability distribution of retirement of capacity τG(t’,J), λG(t,t’,J) yr, 1
Lifetime and probability distribution of retirement of gross capital τC(t’,i,J), λC(t,t’,i,J) yr, 1
Lifetime and probability distribution of retirement of net capital τA(t’,i,J), λA(t,t’,i,J) yr, 1
Lifetime and probability distribution of discard of materials in industries τM, λM(t,t’,i,J,m) yr, 1
Age-efficiency (factor that relates effective to nominal capacity) η1(t,t’,J) 1
Utilization rate (factor that relates output to effective capacity) η2(t,t’,J) 1
Material concentration of products μ(t’,i,m) kg/$
Material inflow to industrial capital stocks Min(t’,i,J,m) kg/yr
Material outflow from industrial capital stocks Mout(t,i,J,m) kg/yr
Material stock in fixed capital of product i in industry J M(t’,i,J,m) kg
Matrix of specific requirements for building up average capacity Ba(t’,i,J) $/($/yr)
Matrix of specific requirements for building up new capacity Bn(t’,i,J) $/$
Matrix of specific requirements for maintaining existing capacity R(t,i,J) $/$
Matrix of specific requirements for disposing of retiring capacity of year t’ D(t’,i,J) $/$

Name and description, variables for I/O model
Square matrix of allocated technical coefficients, average A(t,i,J), Aa(t,i,J) $/$
Square matrix of allocated technical coefficients for installations of a specific

age-cohort
a(t’,i,J) $/$

Note: Dollars ($) represent the monetary unit, but any other currency can be used as well. All monetary values are recorded in constant prices.
I/O = input-output; GFCF = gross fixed capital formation; yr = year; kg = kilograms.

A similar model can be set up for the production capacity
G, where Gin denotes additions to capacity, Gout retirements
of existing capacity, and λG the probability distribution of ca-
pacity retirement (equation (4)). The process efficiency of an
asset may change during its operational life; it may require more
maintenance and have therefore more idle days as it gets older or
it may be upgraded by installing new process control equipment.
To model these effects, an empirical age efficiency η1 is assigned
to each asset in stock. It is the ratio of the current physical ser-
vice to the original service provided by the asset (OECD 2009).
If we use production capacity to measure the physical service
provided by an asset, we can use the age-efficiency parameter to
determine the current or effective production capacity G that

results from the original installations Gin (equation (4)). Here,
G0 is the remaining original production capacity that is still in
use.

Gout (t, J ) = ∑
t ′≤t

Gi n(t ′, J )·λG(t, t ′, J )

G(t, t ′, J ) =η1(t, t ′, J ) · Gi n(t ′, J ) ·
(

1 − ∑
t ′≤t ′′≤t

λG(t ′′, t ′, J )

)
= η1(t, t ′, J ) · G0(t, t ′, J ) (4)

The estimation of asset or product lifetimes and lifetime
distributions has a long tradition in economic accounting
(Winfrey 1935; Lennox et al. 2005; OECD 2009) and within the
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Figure 1 Left: Gross fixed capital formation and its disaggregation into the investment matrix K. Right: schematic drawing of the perpetual
inventory method. Production capacity G, gross fixed capital stock C, and the net capital stock are three different concepts to quantify the
same industrial assets according to the service they provide, their gross economic value, and their net economic value.

social metabolism community (Müller et al. 2007; Murakami
et al. 2010; Oguchi et al. 2010; Kagawa et al. 2011). Product
lifetime distributions λM are commonly used in age-cohort–
based dynamic material stock models to estimate the accumu-
lated material stock M and the future scrap flows Mout that
result from historic material consumption Min (van der Voet
et al. 2002; Müller et al. 2007; Baccini and Bader 1996; Müller
2006) (equation (5)).

Mout (t, i, J , m) = ∑
t ′≤t

Mi n(t ′, i, J , m)·λM(t, t ′, i, J , m)

M(t, i, J , m) = ∑
t ′≤t

Mi n(t ′, i, J , m)·(
1 − ∑

t ′≤t ′′≤t
λM(t ′′, t ′, i, J , m)

)
· T

(5)

By comparing equations (3) and (5), we see that the age-
cohort–based capital and material stock models are techni-
cally identical. One represents the monetary and the other
the material layer of capital stocks and investment flows. We
can establish a formal identity between the perpetual inven-
tory method and the age-cohort–based material stock model by
considering that the physical asset lifetime, that is, the time
span the asset remains in stock before it is demolished, equals
the useful lifetime of the materials in that asset. It is also im-
portant to note that the physical asset lifetime τC may differ
from their accounting or depreciation lifetime τA, because the
latter is derived from accounting principles and not necessar-
ily from the actual physical lifespan (OECD 2009). For each

product j in each industry J, we introduce the array of average
material content μ(t’,i,m) of material m per dollar of com-
modity i in year t’. The identity between the two models can
be used to determine the total material stock M contained
in the fixed capital stock from data on historic investment
(equation (6)):

λM(t, t ′, i, J , m) ≡ λC(t, t ′, i, J )

Mi n(t ′, i, J , m) = μ(t ′, i, m) · K (t ′, i, J )
M(t, i, J , m) = ∑

t ′≤t
Mi n(t ′, i, J , m)·(

1 − ∑
t ′≤t ′′≤t

λM(t ′′, t ′, i, J , m)

)
· T

M(t, i, J , m) = ∑
t ′≤t

μ(t ′, i, m) · K (t ′, i, J )·(
1 − ∑

t ′≤t ′′≤t
λC(t ′′, t ′, i, J )

)
· T

M(t, i, J , m) = ∑
t ′≤t

μ(t ′, i, m) · C(t, t ′, i, J )

(6)

The identity between the two stock models opens up the
opportunity to cover both physical and monetary aspects of in-
dustrial assets within a common modeling framework. Parallel
accounting of both aspects would allow us to identify the con-
tribution of industrial assets to overall material demand and
in-use stocks of materials, as well as to determine the future
potential for material recycling from obsolete assets. It would
allow us to break down the material stocks in industrial assets
by industrial sector, which would provide a much higher level
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of detail than is currently available from statistics about the end
use of different materials.

Modeling the Buildup, Dismantling, and
Maintenance of Fixed Capital and
Production Capacity

We propose to measure the physical service provided by
an industrial asset in terms of its production capacity G, and
inspired by Lennox and colleagues (2005), we introduce the ca-
pacity utilization rate η2(t,t’,J), which relates industrial output
x to production capacity (equation (7)):

x(t, J ) = ∑
t ′

η2(t, t ′, J ) · G(t, t ′, J )

= ∑
t ′

η2(t, t ′, J ) · η1(t, t ′, J ) · G0(t, t ′, J )

= ∑
t ′

η2(t, t ′, J ) · η1(t, t ′, J ) · Gi n(t ′, J )·(
1 − ∑

t ′≤t ′′≤t
λG(t ′′, t ′, J )

) (7)

The upper plot in figure 2 illustrates the relation between
output, effective capacity, and originally installed capacity ac-
cording to equation (7) for the special case where all assets are
decommissioned after τG. The life cycle of an industrial asset
consists of the three stages, buildup, operation/maintenance,
and dismantling, and each stage can be characterized by a ma-
trix of specific capital requirement per unit of capacity. The
matrix symbols are Bn for buildup, R for maintenance or re-
placement, and D for dismantling, and the row index of each
matrix indicates the capital good i and the column indicates the
target sector J (figure 2, middle plot).1

There are several ways of obtaining these matrices:

(1) The average capital requirements matrix Ba is determined
as the amount of capital stock C per unit of output x
(Miller and Blair 2009) (equation (8)2:

Ba = C · x̂−1 (8)

This formula treats the entire capital stock as one unit and
does not distinguish between different age cohorts. Ba is mea-
sured in $/($/year) and not in $/$ as the other capital intensity
matrices defined above, because it relates to the capital stock
and not to the flow of new capacity into the stock.

(2) In the marginal approach (Rose 1984; Fleissner et al.
1993), the capital intensity of new production capacity
is determined by dividing the investment into new assets
KB by the resulting capacity addition Gin (equation (9)).
We use an analog approach to connect maintenance in-
vestments R to the total gross production capacity G0

and demolition investments D to the retiring capacity
flow Gout (equation (9)).

⎧⎨
⎩

Bn = K B · Ĝ−1
i n

R = K R · Ĝ−1
0

D = K D · Ĝ−1
out

(9)

In the I/O literature, Bn is called “matrix of marginal capital
coefficients” (Rose 1984), but we avoid this term because it may
be confused with the concept of marginality used in neoclassical
economics or in CLCA, which refers to marginal processes that
are selected by market mechanisms and not by which age cohort
they belong to.

(3) A comprehensive set of life cycle inventories (LCIs), that
describes existing and future technologies and that cov-
ers construction, operation, and the end-of-life phase of
different assets, would allow us to determine the matri-
ces Bn, R, and D by converting the physical inventories
to monetary flows using appropriate price data. This ap-
proach would yield much detail about physical inputs,
especially for different materials, but might overlook an-
cillary inputs, such as planning, insurance, or other fixed
costs with no material counterpart. To overcome the lim-
ited scope of physical inventories, I/O models can be
used to estimate additional service inputs. This type of
hybridization has some tradition in the research commu-
nity (Suh et al. 2004; Stromman et al. 2009; de Haes
et al. 2004; Lenzen and Crawford 2009). Using LCIs of
very specific or future technologies, such as electricity
generation with carbon capture and storage, may help
to increase the resolution of different industrial sectors
and may amend the predictive capacity of the model
(Hertwich et al. 2014; Gibon et al. 2014). LCIs can also
be used to determine age-efficiency profiles η1(t, t ′, J ).

The production recipe of the industrial processes that belong
to an age cohort t’ is described by their respective technical
coefficients a(t’,i,J), which denote the amount of commodity
i required to produce a unit of output J. Multiplication with
output x yields the interindustry flows into a specific age cohort
of assets a(t’,i,J)·x(t,J,t’) (figure 2, lower plot). In the next
section, we will synthesize the industry-wide A-matrix from the
inventories of individual age cohorts of industrial processes. For
a systematic overview of how to model changes in technical
coefficients, we refer to Rose (1984).

Modeling the turnover of industrial assets is a difficult task,
because the different parts or materials that constitute an asset
may have different lifetimes and because some parts may be re-
placed or maintained more frequently than others. An oil refin-
ery, for example, consists of infrastructure such as roads or pipes,
different reactors, electronic equipment, or catalysts, which all
have their specific material content and lifetimes. Installation
of new process control equipment or catalysts may significantly
increase capacity, without increasing infrastructure stocks. The
general relation between capital investment and capacity G is
therefore more complicated than equation (9) suggests. Because
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Figure 2 Overview of the parameters that describe the life cycle of the factories in sector J that were built in year t’ and that are
demolished in year t’+ τG .

different capital goods in an asset have different lifetimes and
their presence may affect the age efficiency of the asset, there
exists a relation between capacity G, capital content C, age
efficiency η1, capital lifetime λC, and the maintenance matrix
R. This relation can have any degree of complexity, and it is
the task of the model developer to maintain a level of detail
that is necessary and sufficient to tackle the research question
at hand.

A Dynamic Input-Output Model with Age
Cohorts of Assets

A directed, bipartite graph is the common system structure
behind the supply-and-use framework (UN 2008), I/O models
(Miller and Blair 2009), integrated assessment models (Loulou
et al. 2005), and general equilibrium models (Burfisher 2011)
(figure 3). All processes in the system can be divided into two
groups: industries and markets. All flows in the system begin
at an industry and end at a market or vice versa (bipartite
property); they represent commodity flows. Environmental ex-
tensions, including natural resources or emissions, are not con-
sidered here. We assume that there is a one-to-one correspon-
dence between products and industries, so that the supply table
is square and diagonal. That means that each industry J produces
exactly one commodity j, and in the equations below, we use the
index J to denote both industries and commodities. To resolve
the issue of where to draw the boundary between stocks and
flows or throughput and capital the concept of the asset bound-
ary was introduced. It includes a definition of the time interval
over which the industrial metabolism is discretized, which is

called the accounting period, and which is typically 1 year (UN
2008). The accounting period divides the interindustrial flows
into throughput (gray flows in figure 3) and investment (black
flows).

The markets in the system in figure 3 obey a general balance
equation, which can be read directly from the system definition
(equation (10)).

x = Ax + BnGi n + RG0 + DGout︸ ︷︷ ︸
GF CF−dwel l i ng s

+ỹ (10)

Here, ỹ denotes the net final demand that does not contain
investment into construction, maintenance, and demolition of
industrial assets. The market balance in equation (10) is the
starting point for the Leontief primary model. It can be solved

Figure 3 Definition of the input-output system. The system
drawing contains the most central system variables listed in table 1.
Capacity, gross capital, and net capital are three aspects of industrial
assets or fixed capital. They are accounted for in parallel.
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for the total industrial output x, provided that all other variables
are known. We now use the capacity modeling framework to
formulate a dynamic I/O model that is driven by final demand.
We assume that for each year of the modeling period, an exoge-
nous net final demand ỹis given. We assume the capital inten-
sity matrices Bn, R, and D to be known from process invento-
ries of current and future technologies, and we assume lifetimes
λG(t, t ′, J ), age efficiencies η1(t, t ′, J ), load factors η2(t, t ′, J ),
the age-cohort–specific technical coefficients a(t’,i,J), and the
age structure of the original productive capacity in a starting
year, G0(t = t0, t ′, J ), to be given:

Given: ỹ, R, Bn, D, λG, η1, η2, a , G0(t = t0), to be ob-
tained: x, A, Gi n, Gout

New capacity Gi n(t = t ′, J ) and retiring capacity
Gout (t, t ′, J ) in industry J are connected by a dynamic capacity
model as introduced above (equation (11)):

Gout (t, t ′, J ) = Gi n(t ′, J ) · λG(t, t ′, J )

G0(t, t ′, J ) = Gi n(t ′, J ) ·
(

1 − ∑
t ′≤t ′′≤t

λG(t ′′, t ′, J )

)
(11)

We can now synthesize the interindustry flow matrix Z by
scaling the technical coefficients of the individual assets of

different age cohorts a(t’,i,J) by their respective output x(t,J,t’)
and by relating output to capacity using equation (7) (equation
(12)):

Zi J (t) =
∑

t ′
a(t ′, i, J ) · x(t, t ′, J )

=
∑

t ′
a(t ′, i, J ) · η(t, t ′, J )·G0(t, t ′, J ) (12)

where η(t, t ′, J ) is defined as the product of capacity utilization
and age-efficiency (equation (13)):

η(t, t ′, J ) = η2(t, t ′, J ) · η1(t, t ′, J ) (13)

The industry-wide attributional A-matrix Aa can be syn-
thesized from the technical coefficients of the individual age
cohorts of assets and their respective utilization rates and age
efficiencies (combination of equations (12) and (7)), as shown
by equation (14):

Aa
i J (t)= Zi J (t)

xJ (t)
=
∑
t ′

a(t ′, i, J ) · η(t, t ′, J )·G0(t, t ′, J )∑
t ′

η(t, t ′, J )·G0(t, t ′, J )
(14)

Equation (14) combines process inventories with dynamic
stock modeling and represents a synthesis of the average A-
matrix of technical coefficients from process inventories of as-
sets of different age cohorts. The possibility of such a synthesis
was pointed out by several researchers (Carter 1963; Idenburg
and Wilting 2000; Lennox et al. 2005; Pan 2006; Ryaboshlyk
2006).

We now describe the model solution. The following calcula-
tions are to be performed stepwise, year by year, starting in the
first model year t0 + 1. The scheme of calculations is shown in
figure 4.

First, we determine the retiring capacity Gout (t, t ′, J ) ac-
cording to equation (11) and subtract it from the existing ca-
pacity stock at the end of the previous year t-1 and denote the
thusly obtained intermediate capacity by G̃0(t, t ′, J ). At the
end of each model year, the new capacity is added to the stock
(equation (15)).

G̃0(t, t ′, J ) = G0(t − 1, t ′, J ) − Gout (t, t ′, J )
G0(t, t ′, J ) = G̃0(t, t ′, J ) + Gi n(t ′ = t, J )

(15)

By substituting x(t, J ) with equations (7) and (15), we can
reformulate the market balance equation (10) at the end of
each model year as shown in equation (16).

∑
t ′

(
η(t, t ′, J ) · (G̃0(t, t ′, J ) + Gi n(t ′ = t, J )

))

= ỹ(t, J ) +
∑

J ′

⎛
⎝ A(t, J , J ′) ·∑

t ′

(
η(t, t ′, J ′) · (G̃0(t, t ′, J ′) + Gi n(t ′ = t, J ′)

))+ Bn(t, J , J ′) · Gi n(t, J ′)

+R(t, J , J ′) ·∑
t ′

(
G̃0(t, t ′, J ′) + Gi n(t ′ = t, J ′)

)+∑
t ′

D(t ′, J , J ′) · Gout (t, t ′, J ′)

⎞
⎠ (16)

We solve equation (16) for Gi n(t, J ) and combine the thusly
obtained equation with equation (14) for the A-matrix and
equation (15) for the capacity balance. This leads to an equation
system that has to be solved for each model year in turn. It is
shown in section S1-2 in the supporting information on the
Web.

If a unique solution for Gi n(t, J ) and A(t) can be obtained
using an iterative approach similar to the one designed by
Lennox and colleagues (2005), x(t) can be determined by solv-
ing the market balance in equation (10) for the total required
industry output (equation (17)):

x(t) = (I − A(t))−1 · (Bn(t) · Gi n(t)

+R · G0 + D · Gout + ỹ(t)) (17)

Performing these calculations for all model years from t0+1
to the time horizon of the model yields a time series of A-
matrices and industry output x.
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Figure 4 Scheme of calculations for the year-by-year loop. Equation numbers are shown in brackets.

Future Application: Economic and Physical Models of
the Industrial Metabolism

Combined economic and physical models of industrial flows
have a long tradition, as stated in the Introduction. Combin-
ing the physical and economic layers of dynamic capital stock
models allows us to consider several important issues: First,
material requirements of new fixed assets may alter global ma-
terial cycles because they may be much more material intensive
than established technologies (Vidal et al. 2013). Increasing
metal demand from the installation of new energy technolo-
gies on the large scale may require mining of lower-grade ores,
which may be substantially more energy intensive than present
mining activities (Norgate and Jahanshahi 2006; Northey
et al. 2014). Second, new energy technologies often rely on
specialty materials, which may turn into bottlenecks when new
energy technologies are deployed on the large scale, because
the availability or the access to some mineral resources may be
limited (Graedel et al. 2012). Finally, recycling scrap from re-
tiring fixed assets could reduce primary material production and
related impacts associated with primary production. Dynamic
stock modeling allows for estimating the future generation of
waste for recycling and treatment that arises from retiring fixed
assets. Monetary data for capital stocks are more readily avail-
able than information on their material content and could thus
help to estimate the material stocks in fixed capital assets as
well as material inflows and outflows using equation (6).

The material layer of industrial and other in-use stocks and
the material layer of interindustry flows, resources, and emis-
sions together form a full representation of the anthropogenic
material cycles. Material flows between industries and waste
treatment activities can be described with the WIO model
and the WIO-MFA approach (Nakajima and Nakamura 2006).
WIO-MFA is also well suited to determine the array of mate-
rial concentration μ of capital goods (Nakamura et al. 2007).
Combining a WIO model that was amended with resource and
emissions accounts with a dynamic capital stock model would
allow us to perform a detailed, economy-wide dynamic MFA,
where the WIO model describes interindustry flows and the dy-
namic stock model describes the fixed capital stocks and their
development over time.

Recent developments in economic accounting and I/O mod-
eling allow for establishing a mass balance not only for product

markets, but also for industries (Schmidt et al. 2010; Nakamura
et al. 2007; Giljum and Hubacek 2009). When constructing
an IO model from a supply-and-use table, one has to consider
that the system-wide production balance and the industry bal-
ance may be distorted by different constructs (Majeau-Bettez
et al. 2014), and the allocation of resource use, waste, and emis-
sions, to single-output processes may break the mass balance of
industries (Weidema and Schmidt 2010).

What Information is Required?

National accounting, I/O, and MFA have different foci, and
additional effort or assumptions in bridging the data require-
ments between these frameworks may be required. Because we
operate at the economy-wide level, some generic representation
needs to be given for all industries, irrespective of the level of
detail of certain materials and their relevant sectors. We can
expect that top-down macro-level estimates will have to be re-
fined into meso-level or finer assessments, for example, for a
particular metal type (Hawkins et al. 2007).

We break down the data requirements into production
recipes, capacity information, and output/demand information.
Production recipes in the form of historic coefficient matri-
ces a(t’,i,J) are readily available from I/O databases, and future
or best available technology inventories are available for in-
tegration from LCI databases (Gibon et al. 2014) (stocks as
consumption couplers). Matrices of capital formation to esti-
mate K or B are also readily available from national accounting
institutes or through projects such as KLEMS (O’Mahony and
Timmer 2009) (stocks as capital containers). The split of K into
KB, KR, and KD, or Bn, R, and D, is generally less readily avail-
able. As in previous work on this topic, the split can be made by
industry knowledge coupled with expert judgment. Examples
from the literature are given in table S1-1 in the supporting
information on the Web. Capacity information (lifetime, age
efficiency, and capacity utilization) can be gleaned from na-
tional statistics, although we acknowledge the lack of transpar-
ent, easily accessible data here. Expert judgment on proxy data
can often be utilized. Finally, drivers of industrial activity ỹ
are readily available in national statistics and I/O databases
for historic years and can be linked to exogenous scenario
projections common in integrated assessment models or other
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forward-looking models. G0 is readily available from national
statistics. Data on material content or unit price μ of products
can be obtained from trade statistics, product datasheets, and
product composition databases. The material content of produc-
tive assets can sometimes be obtained from company statistics
(stocks as resource repositories). As a field, IE is well positioned
to supplement economic statistics with physical aspects of the
industrial metabolism, as it has contributed to the provision
of publicly accessible work in the field of environmentally ex-
tended multiregional IOA.

Other Applications

We discuss how the framework and the IO model can be
applied to consequential modeling and how it relates to model
families with elaborated treatment of markets, such as inte-
grated assessment and general equilibrium models.

Capital Stocks and Consequential Life Cycle
Assessment

CLCA aims at quantifying the consequences of a decision
within an economy (Zamagni et al. 2012). Here, we consider
an increase in final demand, which represents a perturbation
of the industrial system that affects both markets and indus-
tries. According to Schmidt (2008, 352), the consequential
approach “implies that marginal, i.e. actual affected processes
are included [ . . . ].” Unlike in neoclassical economics, markets
in the Leontief IO framework do not play an active role; they
merely match industry supply to intermediate and final demand.
Both product transformation and price formation are attributed
to the industries. The dynamic model of production capacity
can be used to model the consequences of an increase in fi-
nal demand for industrial output and capacity extension in a
Leontief IO framework. Figure 5a shows the response of the in-
dustrial system to a change in final demand. The markets in the
system were balanced in their original state (black variables),
and hence the marginal changes alone balance as well (gray
variables). An increase in industry output xC can be met by (1)
increasing the utilization rate of existing capacities or (2) by
installing new capacity (figure 5b). In the first case, one needs
to know the split between fixed costs a1 and variable costs a2 of
an asset. Fixed costs are related to the capacity, irrespective of
its utilization rate, and variable costs are coupled to the actual
output. The increase of the utilization rate of existing assets
�η2 determines which part of the additional demand can be
delivered by existing capacities. In the second alternative, the
capital intensity Bn, the fixed and variable costs per unit of out-
put from the new assets a1(t ′ = t, i, J ) and a2(t ′ = t, i, J ), and
the utilization rate η2_C of the new assets need to be known.
One can then establish and solve an equation system that de-
termines the change in output xC as a function of the change in
the utilization rate of the existing capacities and the utilization
rate of the marginal assets as well as their capital intensity and

fixed and variable costs. The equations are shown in section
S1-6 in the supporting information on the Web.

The dynamic capacity model allows us to allocate the change
in output xC to specific age cohorts and technologies of produc-
tive capacity by the choice of �η2 and η2_C. The environ-
mental consequences of producing xC can thus be associated
with specific assets, and not with average technology, as in the
attributional approach. To endogenously determine utilization
rates and their changes resulting from increasing demand, the
Leontief IO framework needs to be extended, because more
sophisticated modeling of industries and especially markets is
required. Examples include the use of partial or general equi-
librium models (see Earles and Halog [2011] for an overview
and Whitefoot et al. [2011] for an example), a detailed study
of the likely market response depending on the magnitude of
change in industrial output (Weidema et al. 2009; Schmidt
2008), or agent-based modeling (Axtell and Andrews 2002).
The framework presented here does not represent an alterna-
tive to previous concepts; it should rather be seen as a versatile
descriptive model of the fixed capital stock that can couple
the I/O framework to different market-driven consequential
approaches.

The Connection to Technology-Rich Integrated
Assessment Models and General Equilibrium Models

Some integrated assessment models (IAMs) contain detailed
descriptions of capital stocks including age-cohorts and differ-
ent technology types, which are very similar to the concepts
described here. The TIMES (The Integrated MARKAL-EFOM
System) model is a good example (Loulou et al. 2005). Because
these models often minimize total costs, the technical coeffi-
cients of fixed assets are not necessarily constant, but can vary
over a certain range. This provides more flexibility in the mod-
eling of product substitution, but poses challenges regarding
the physical balances of the industrial processes in these mod-
els, because the material layer of the industrial metabolism is
not consistently covered. Computable general equilibrium mod-
els consider perfectly competitive product and labor markets.
They use nested production functions, which assume some sub-
stitutability between different production factors, but limited
substitutability between intermediate requirements (Burfisher
2011). This model class is timeless because it only computes
equilibrium states. The capital stock is modeled on an abstract
and aggregate level only; no age cohorts or materials are tracked.

For scenario modeling of long-term resource use, emissions,
and waste flows, a physically balanced model is indispens-
able. No matter how products and production factors are dis-
tributed between end users and producers (economic layer),
physical balances should always be respected by the models,
because they represent an insurmountable constraint to a tran-
sition to a low-carbon society. Especially when modeling on
the large scale, physical constraints represent challenges when,
for example, the extent of material recycling is constrained by
the available amount of recyclable material. The simultaneous
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Figure 5 (a) Original state (black) and perturbations (gray) of an industrial system after an increase in final demand. (b) The split of the
additional output xC into existing and new capacities and the resulting interindustrial flows ZC .

age-cohort-lifetime–based accounting of capital and material
stocks can be combined with assessment methods other than
dynamic I/O analysis. This would allow for more sophisticated
modeling of market mechanisms than what is possible in I/O. It
could lead to the development of comprehensive and physically
balanced models of industries and markets, which can be used to
build scenarios for the future socioeconomic metabolism under
different economic paradigms.

Conclusion

Under global resource and emissions constraints, deliber-
ate management of stocks over long time intervals may be
a key strategy to maintain high levels of human well-being
(Boulding 1966). In such a world, material stocks should be
tracked as carefully as capital stocks to facilitate the estima-
tion of future mineral resource use related to industrial assets
and the potential for material recovery and recycling from ob-
solete capital stocks (stocks as capital containers and resource
repositories).

The turnover speed of the existing assets determines how
quickly new technologies can replace old ones (Davis et al.
2010) (stocks as dynamics determiners). Tracking age cohorts
is a generic and versatile way for modelers to reflect the iner-
tia that capital stocks represent. Age-cohort–based accounting
of stocks has a long tradition in capital stock measurement and
MFA. A coordinated effort may enable researchers and accoun-
tants to synchronize and harmonize their accounting frame-
works to provide a more detailed and reliable understanding
of the dynamics of industrial efficiency (stocks as consumption
couplers) and the capital and material requirements needed to
build a sustainable energy future (IEA 2010).

The modeling and accounting framework presented here
can serve as a guideline for future modeling efforts. It brings
together different aspects of socioeconomic metabolism related
to in-use stocks, which, at present, are covered by the different
disciplines, MFA, national accounting, IOA, and LCA. We

showed that there is substantial overlap between those fields
and identified synergies that may be exploited in future work.
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Notes

1. Note that the elements of D can be negative, which represents the
salvage value of the retiring assets.

2. Miller and Blair (2009) denote the capital stock by K, whereas,
here, we use C for the stock of gross fixed capital and K for the flows
into fixed capital.
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