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Abstract

We present an extension of the standard RAS algorithm, referred to as 'constrained RAS',

or 'cRAS'. In contrast to existing RAS variants employing additional partial information in

a particular aggregated form, our technique makes use of partial information of any kind.

This is achieved by imposing constraints on arbitrary-sized and -shaped sets of elements to

be balanced. The characteristics of the cRAS method are investigated in detail.

1 Introduction

A common problem in compiling and updating input-output tables is that of incom

plete data. Missing matrix elements may be due to a variety of reasons such as costly

and therefore incomplete industry surveys, or the suppression of confidential informa

tion. Unknowns almost always outnumber data points, resulting in the system being

underdetermined, that is exhibiting too many degrees of freedom to be solved analyti

cally, so that certain estimation, balancing or optimisation techniques have to be ap

plied.

Despite having received mixed responses in relation to the accuracy of its results1,

a widely applied remedy in this situation is the bi-proportional, or RAS method (Stone

and Brown 1962). Especially for the task of constructing or updating regional input-

output tables from national data, the RAS method has been compared with other ap

proaches such as location quotients and commodity balances (Schaffer and Chu 1969;

Leontief 1953), gravity models (Leontief and Strout 1963), linear programming (Moses

1960; Matuszewski et al. 1964; Davis et al. 1977), or entropy and minimum informa

tion gain techniques (Uribe et al. 1966; Batten 1982; Golan et al. 1994). The origins

of the method go back several decades (Deming and Stephan 1940); for a historical

background, see Bacharach 1970, Chap. 1-3, and Polenske 1997.

The RAS method - in its basic form - bi-proportionally scales a matrix Ao of un-
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balanced preliminary estimates of an unknown real matrix A, using A's known row

and column sums. The balancing process is usually aborted when the discrepancy be

tween the row and column sums of Ao and A is less than a previously fixed threshold.

Bacharach 1970 has analysed the bi-proportional constrained matrix problem in great

detail, in particular in regard to the economic meaning of bi-proportional change2, the

existence and uniqueness of the iterative RAS solution, its properties of minimisation

of distance metric3, and uncertainty associated with errors in row and column sum data

and with the assumption of bi-proportionality.

A special situation arises when some of the matrix elements of A are known in

addition to its row and column sums, for example from an industry survey. The 'modi

fied RAS' approach (Paelinck and Walbroeck 1963; Allen 1974; Lecomber 1975 deals

with this partial information as follows: the preliminary estimate Ao has to be "netted",

that is the known elements are subtracted, and Ao contains 0 at the corresponding posi

tions. The net Ao is then subjected to the standard RAS procedure, and the known ele

ments are added back on after balancing. An operational example of this approach is

the GRIT (Generation of Regional Input-output Tables) method (Jensen et al. 1979;

West et al. 1984; Bayne and West 1989), which involves 4 steps: 1) preparation of the

national table, 2) preliminary estimate of the regional table using a non-survey ap

proach such as commodity balances or location quotients4, 3) insertion of superior,

survey-based data, and 4) identification of important elements, and subsequent collec

tion and insertion of superior data. Within GRIT, aggregated superior data can only be

inserted after aggregating the preliminary table (Jensen et al. 1979, Sec. 6.4). Another

variant of the modified RAS method takes into account the uncertainty of the prelimi

nary estimates, and contains the occurrence of perfectly known elements as a special

case5 (Allen and Lecomber 1975).

In practice, situations can arise where, in addition to certain elements of A, some

1 See for example Uribe et al. 1966; Czamanski and Malizia 1969; Goldman 1969; Miernyk 1969;

Malizia and Bond 1974; Morrison and Smith 1974; Miernyk 1976; Hinojosa 1978; Parikh 1979;

Butterfleld and Mules 1980; Morrison and Thuman 1980. Jensen et al. 1979 summarise the dilemma

of regional input-output modeling as a trade-off between 'professional purity' and uncertain accu

racy.

2 When applied to the forecasting of monetary input-output matrices, bi-proportional changes have

been interpreted as productivity, substitution or fabrication effects (Leontief 1941; Stone and Brown

1962) affecting industries over time. Miernyk's (1976) view however is that the RAS method "substi

tutes computational tractability for economic logic", and that the production interpretation loses its

meaning when the entire input-output table is balanced, and not only inter-industry transactions (see

also Giarratani 1975).

3 The RAS, Linear Programming and minimum information gain algorithms yield a balanced matrix

estimate that is - in terms of some measure of multidimensional 'distance' - closest to the unbal

anced preliminary estimate. When applied to temporal forecasting, this property is explained as a

conservative hypothesis of attributing inertia to inter-industrial relations (Bacharach 1970, p. 26).

4 For an overview of these techniques see Schaffer and Chu 1969, or Harrigan et al. 1980.

5 This is accomplished by introducing a matrix E of standard errors of the elements in Ao, which is

subsequently balanced in order to take up the difference between the preliminary and true totals.

Where £/p0, the element in Ao remains unchanged. Allen and Lecomber 1975 also investigate the

influence of errors in the "true" totals.
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aggregates of elements of A are known. For example, a published table AG of national

aggregates may constitute partial information when constructing a multi-regional input-

output system, or a more disaggregated national table. Accordingly, Oosterhaven et al.

1986 add a "national cell constraint" to the standard row and column sum constraints.

Similarly, Jackson and Comer 1993 use partition coefficients for groups of cells of a

disaggregated base year matrix to disaggregate cells in an updated but aggregated ma

trix. Batten and Martellato 1985, p. 52-55) discuss further constraints structures, in

volving intermediate and final demand data. Gilchrist and St Louis 1999 propose a

three-stage RAS for the case when aggregation rules exist under which the partial ag

gregated information AG can be constructed from its disaggregated form A. These rules

take the form of matrix operators P and Q, with AG = PAQ. The essence of their

TRAS method is that balancing is carried out alternately at the disaggregated and at

the aggregated level, with the aggregated row and column scaling operators RG and SG

being disaggregated via multiplication with the transposed operators Pl and Q\ Subject

ing an input-output matrix to random censoring, Gilchrist and St Louis 1999 demon

strate that the inclusion of partial aggregated information into the RAS procedure leads

to superior outcomes than applying the standard RAS method.

In the above approaches the partial information has to assume a particular aggre

gated form. A number of authors6 have expressed the table estimation as an economet

ric or a linear or quadratic programming problem, which allows the balancing of nega

tive elements and the inclusion of partial information of any form. Lahr and de Mes-

nard generalised the method 1) by formulating it as a Lagrangian multiplier calculus,

as an econometric estimation, or as an optimisation, 2) by enabling balancing of nega

tive elements, and 3) by allowing for partial information of any form, by imposing

constraints on arbitrary-sized and -shaped sets of elements of Ao. Lahr and de Mesnard

2004 provide a recent overview.

The aim of this work is to test the performance of approaches that feature arbi

trary constraints. In particular we investigate whether

1) it is better to constrain a few large elements, or many small elements,

2) it is better to have a few constraints spanning many elements, or many con

straints on single elements,

3) the shape of the constraints (adjacent elements or disjunct elements) influences

the performance.

We enumerate performance using a range of common distance measures, and apply

them to the flow matrix, the Leontief inverse, and some multipliers. We restrict our

selves to testing a RAS-type approach (referred to as 'constrained RAS', or 'cRAS'),

and ignore Lagrangian and optimisation approaches.

This article is organised as follows: We describe our proposed cRAS method, then

present an application to a generalised regional input-output system for Australia, and

conclude.

6 See for example Byron 1978, Morrison and Thuman 1980, van der Ploeg 1982 and Cole 1992 on the

Lagrangean method, Gerking 1976; 1979a and Toh 1998 on econometric estimation, and Tarancon

and Del Rio 2005 on optimisation. See Junius and Oosterhaven 2003 and Jackson and Murray 2004

on the problem of negative entries. See Morrison and Thuman 1980, Cole 1992, Thissen and Lof-

gren 1998 and Tarancon and Del Rio 2005 on generalized constraints.
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2 A representative cRAS method

In the standard RAS method, the preliminary estimate Ao is alternately row- and

column-scaled using diagonal matrices f and s, so that after one round of balancing,.

Ai = fAo§. Ai is then subjected to the next scaling operation. One may start with either

rows, Ai = (fA0)s, or columns, Ai = f(A0§). In the first round, fa = a, I 2,Ao,y and §M =

cij I 2/Ao.y, and so on, where the ays are row/column totals of A.

Let C be the number of additional available data points to be used as constraints

on the Ay. Let Ec be the number of elements of A participating in constraint c. Let (ic,e,

Ec

jce) be the coordinates of element e in constraint c. Let Bc = 2 Aw^be the value pre-
e= 1

scribed for the sum of elements participating in constraint c. A typical cRAS algorithm

can then be described as a sequence:

- Generate preliminary estimate Ao;

- scale rows of Ao by pre-multiplication with f;

- scale constraint 1 by multiplying all E\ participating elements with

/Ec Ec I Ec

e=l e=l / e=l

- scale constraint 2 by multiplying all E2 participating elements with ;

I Ec Ec I Ec

Bi/1^ Aoti2ej2e = 2-j Ai2 j2e I Zj Ao,i2ej2e;
/ e=l e=l I e=l

- and so on, until constraint C;

- scale columns by post-multiplication with s;

- result of the above operations is Ai;

- repeat scaling process for Ai until all scaling factors deviate from 1 by less than

a specified threshold.

Any permutation of this sequence is also a valid cRAS algorithm. Constraints can in

clude any number of elements, which may be fully, partly or non-adjacent7. Constraints

may also exclude some of the row and column totals (compare Thissen and Lofgren

1998, p. 1994).

3 Performance evaluation

In the following, we will examine the performance of the cRAS method for the exam

ple of estimating the use matrix U of the 1996-97 Australian input-output tables from

its true row and column sums, as well as varying numbers of subsets of true elements,

7 Constraints with Ec = 1 need not be part of the scaling procedure, but could be "netted out" using

the "modified RAS" method.
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starting with different preliminary estimates. We will also appraise estimates for the Le-

ontief inverse L = (I-Ux"1)"1, and output and CO2 multipliers £ = 1L and X = cL, re

spectively, where I is a unity matrix, x is the diagonalised gross output vector, 1 is a

unity row vector, and c is a row vector of sectoral CO2 intensities.

While a performance evaluation based on U emphasises the importance of the ta

ble elements themselves, evaluations based on L, £ and X recognise that these derived

quantities are ultimately of interest in applied models. With each subsequent step of

further processing U (through inversion to L, summing to £ and weighting to X), the

derived quantities embody more widely inter-linked information. Evaluations of these

quantities (rather than table elements) are the subject of a more integrated and applied

measure of overall, 'holistic', or operational accuracy (Jensen 1980). While table accu

racy represents the conventional understanding of a measure of the deviation of all esti

mated matrix elements from their "true" values, holistic accuracy is concerned with the

representativeness of a table of the synergistic characteristics of an economy. In this

perspective, the accuracy of single elements may be unimportant, as long as the results

of modeling exercises yield a realistic picture for the purpose of the analyst or decision

-maker. Table accuracy implies holistic accuracy, but not vice versa; nevertheless, the

former may not be achievable, while the latter may be more realistic in pragmatic

terms. However, a drawback is that general criteria for holistic accuracy are hard to de

fine, and hence are a characteristic of the model output, such as the derived quantities

above.

3.1 Programming features

A number of stochastic experiments of up to 250 runs were carried out, in which the

preliminary estimate, the number of constraints, the numbers Ec and coordinates (iw,jCif)

of constrained subset elements, and other parameters were varied.

3.1.1 Balancing threshold

It is in principle possible to terminate the balancing process based on absolute or rela

tive criteria. For example, a threshold can be formulated as max, ( |w, - un,] / w, ), where

u contains the row and column sums of U, and un those of the nth iteration of Uo.

However, industry sectors would receive equal weights independent of their size.

Therefore, we adopted the criterion |w, - uni\<Ua, for the row and column totals, and

also for all additional constraints, where £/= Af~2 2*y £/*/ is the average absolute value

of the true flow matrix, and a is a scaling factor. This way, the balancing result will

exhibit an overall absolute proximity to constraints, which is better by a certain factor

than the average magnitude of the matrix itself.

3.1.2 Preliminary estimate

We allowed three different types of preliminary estimates Uo: 1) the 1994-95 Australian

flow matrix U95, 2) a weighting U[ = (w, uj) I S™ Umn according to industry size, and 3)

random numbers U* with mean U. Option 1 represents a classical updating task. Op

tion 2 resembles an estimation task (often of regional tables) in the absence of any data

except prescribed row and column sums; the formulation is the most simple prediction

for inter-industry flows. It is based on the assumption of independence, that is it im-
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Fig. 1: Constraint structures and coordinate locations in the flow matrix U, for the

example of distributing 50 constraints with 20 elements each. Set elements

can be either disjunct (left) or adjacent (right). Their coordinates can as

sume either random positions (top) or be skewed towards top-ranking ele

ments (bottom). Note that in the numerical experiments the number of set

elements does not have to be constant.
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plies that flows from industry i to industry j are large if i produces much and j uses

much. Since the production recipe, transport distances or other parameters do not play

any role, this estimate is generally quite unrealistic (Uribe et al. 1966). Note that in the

absence of additional subset constraints, option 2 already satisfies row and column con

straints, since £ (w, uj) I E™ Umn = uh and therefore cannot precede simple RAS balanc

ing.

3.1.3 Constraint size and structure

In principle, the elements belonging to any particular constraint can be an arbitrary-

shaped and -sized subset of the elements of U. This was simulated by randomly select

ing the number and size of constraints as well as the coordinates of elements. The con

straint value is the sum over values of the target matrix elements that belong to the re

spective constraint. In this work, all constraints are consistent by definition, because

their values are determined from the 1996-97 U matrix.

The elements belonging to any constraint can be anything from completely dis

junct (referring to completely different pairs of industries) to all adjacent (having in

dustries in common). One common example for completely disjunct constraints are so-

called "rectangular" constraints which arise out of constraining all elements U[f con

necting industries i and j and regions r and s of a multi-regional input-output table, by

the national estimate Uij. More random disjunct constraints can occur if a table ex

pressed in a certain industry sector classification is constrained using data expressed in
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Fig. 2: Number of constrained elements (A, left y-axis) and overlap / duplication

ratio (O, right y-axis) as a function of the number of set elements (all con

straint structures, equal selection of constraint element coordinates).
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another industry sector classification. In Australia, for example, superior data often ex

ists classified as ANZSIC8, while input-output tables are classified in IOPC9. The most

common versions of these, ANZSIC 4-digit and IOPC 4-digit, overlap in a sense that

for some parts of the economy, ANZSIC is more detailed, for others IOPC. Moreover,

while IOPC is structured to minimise the output of secondary products for all sectors,

ANZSIC could include entire establishments with multiple output commodities in one

sector10. The result of constraining an IOPC system with ANZSIC data are constraints

that are scattered over non-adjoining rows as well as columns (Fig. 1 left).

It is equally likely to encounter constraints that incorporate adjacent elements,

which mostly result from aggregated superior information, for example the intermediate

input of a whole group of commodities, or the output of a whole group of industries.

8 Australian and New Zealand Standard Industry Classification.

9 Input-Output Product Classification.

10 An example is broadacre farming, where combined beef-wheat farms are classified in one ANZSIC

sector, but split into two IOPC sectors.
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Fig. 3: Probabilities for selecting elements from a ranked list, obtained from 2000

runs. The curve parameter is the number r of randomisations, r = 1 selects

all ranks equally.
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These will appear as either vertical (inputs) or horizontal (outputs) bands of the table

to be estimated (Fig. 1 right).

In general, subsets of randomly selected elements will be mostly disjunct. In order

to generate adjacent-cell subsets, a seed element was first selected randomly, and then

only adjacent cells were selected for the remaining elements up to the respective con

straint size. In this work, only row- and column-segment-shaped constraints (with

random orientation) were considered as adjacent-cell subsets.

With increasing number and/or size of constraints, overlaps and/or duplications

become more likely. In the following we refer to the (gross) number of elements in all

constraints as 'set elements', while a smaller number of elements (net of overlap) are

actually 'constrained'. If set elements are few, they are likely not overlapping (Fig. 2,

set elements = constrained elements, triangles and solid line coincide; overlap ratio =

1). As the number of set elements increases, overlap/duplication increases: the number

of actually constrained elements falls below the number of set elements contained in all

constraints (Fig. 2, set elements > constrained elements, triangles and solid line devi

ate; overlap ratio >1).

3.1.4 Coordinate location

In principle, constraints can incorporate arbitrary elements, or focus on important ele

ments. In order to cover these alternatives in our simulations, set elements (Fig. 1 left)

or seed elements (right) were either selected equally (top) or preferentially (bottom)



A
flexible

approach
to

matrix
balancing

under
partial

information
9

F
i
g
.

4
:
D
i
s
t
r
i
b
u
t
i
o
n
o
f
e
l
e
m
e
n
t
n
u
m
b
e
r
s
a
n
d

v
a
l
u
e
s

i
n
t
h
e
1
9
9
4
/
9
5
A
u
s
t
r
a
l
i
a
n
f
l
o
w

m
a
t
r
i
x

a
c
r
o
s
s

s
i
z
e

b
r
a
c
k
e
t
s
.
W
h
i
l
e

t
h
e
r
e

a
r
e

l
a
r
g
e
n
u
m
b
e
r
s

o
f

e
l
e
m
e
n
t
s

n
e
a
r

z
e
r
o
a
n
d
b
e
t
w
e
e
n
A
$
l
m

a
n
d
A
$
1
0
0
m
9
m
o
s
t

o
f
t
h
e

total
i
n
t
e
r
m
e
d
i
a
t
e

t
r
a
n
s
a
c
t
i
o
n
v
a
l
u
e

is
c
o
n
c
e
n
t
r
a
t
e
d

i
n
a
f
e
w
e
l
e
m
e
n
t
s
o
f
A
$
l
b
a
n
d

larger.

3
0
0
0
T

T
4
5
%

*
o

(4-1

0S-4

0
)

2
0
0
0

1
0
0
0

■
3
0
%

73B

■
1
5
%

3
6

9

F
l
o
w
v
a
l
u
e
b
r
a
c
k
e
t
l
o
g
(
Uij

$)

f
r
o
m

a
r
a
n
k
i
n
g

o
f
i
m
p
o
r
t
a
n
t

e
l
e
m
e
n
t
s
.
T
h
e

latter
w
e
r
e

d
e
f
i
n
e
d

a
s

t
h
o
s
e

e
l
e
m
e
n
t
s

t
h
a
t

h
a
v
e

the
largest

v
a
l
u
e

in
the

p
r
e
l
i
m
i
n
a
r
y
estimates

U95
or

U1.

P
r
e
f
e
r
e
n
t
i
a
l

s
e
l
e
c
t
i
o
n

(
F
i
g
.

1
b
o
t
t
o
m
)

c
a
n

b
e

r
e
a
l
i
s
e
d
b
y

g
e
n
e
r
a
t
i
n
g
r
a
n
d
o
m

r
a
n
k

n
u
m
b
e
r
s

(in
this

c
a
s
e
f
r
o
m

1
to

N
2
=

1062)
w
i
t
h

a
larger

probability
for

l
o
w
e
r
n
u
m
b
e
r
s

(
u
p
p
e
r
r
a
n
k
s
)

in
o
r
d
e
r

t
o
e
n
s
u
r
e

t
h
a
t
t
h
e
s
e

a
r
e
a
l
w
a
y
s

p
a
r
t
o
f
a

c
o
n
s
t
r
a
i
n
t

s
u
b
s
e
t
.
S
u
c
h

a
p
r
o
b
a
b
i
l
i
t
y

d
i
s
t
r
i
b
u
t
i
o
n
c
a
n
b
e

c
o
n
s
t
r
u
c
t
e
d
b
y

r
e
p
e
a
t
e
d
l
y

a
p
p
l
y
i
n
g

a
r
a
n
d
o
m
n
u
m
b
e
r

R
a
n
d
e
[
0
,
l
[

a
s
t
h
e
u
p
p
e
r
b
o
u
n
d

o
f
a
s
u
b
s
e
q
u
e
n
t
r
a
n
d
o
m
n
u
m
b
e
r
.
A
n

a
l
g
o
r
i
t
h
m

t
h
a
t
c
a
r

ries
o
u
t

this
t
a
s
k

is
q
u
i
t
e
s
i
m
p
l
e
:

x
=

1.
:
F
o
r
k
=

1
T
o

r
:
x
=
x
x
R
a
n
d

([0,l[)
:
N
e
x
t
k

:
r
a
n
k
=
x
x
N
2

T
h
e
m
e
a
n

o
f
r
a
n
d
o
m

v
a
l
u
e
s
x

g
e
n
e
r
a
t
e
d

in
s
u
c
h

a
w
a
y

d
e
c
r
e
a
s
e
s

w
i
t
h

t
h
e
n
u
m
b
e
r

o
f

r
a
n
d
o
m
i
s
a
t
i
o
n
s

r.
B
a
s
e
d
o
n
o
n
c
e
-
r
a
n
d
o
m
i
s
e
d

(r
=

1)
v
a
l
u
e
s

in
[0,l[,

e
l
e
m
e
n
t
s

o
f
r
a
n
k

r
a
n
k

a
r
e

s
e
l
e
c
t
e
d
w
i
t
h

e
q
u
a
l

p
r
o
b
a
b
i
l
i
t
y

(
c
u
r
v
e

1).
S
i
n
c
e
l
o
w
n
u
m
b
e
r
s
x
€

[O,jc[
o
c
c
u
r

w
i
t
h

i
n
c
r
e
a
s
i
n
g
f
r
e
q
u
e
n
c
y

a
f
t
e
r
r
e
p
e
a
t
e
d
r
a
n
d
o
m
i
s
a
t
i
o
n
s

(r
>

1),
t
o
p
-
r
a
n
k
i
n
g

e
l
e
m
e
n
t
s

a
r
e
s
e
l
e
c
t
e
d
w
i
t
h
i
n
c
r
e
a
s
i
n
g
p
r
o
b
a
b
i
l
i
t
y

(
F
i
g
.

3).

A
s
t
r
e
a
m
l
i
n
e
d

c
o
n
s
t
r
a
i
n
t

s
e
l
e
c
t
i
o
n

is
m
u
c
h

in
t
h
e

spirit
o
f

'
G
R
I
T
'

a
n
d

s
i
m
i
l
a
r

t
e
c
h
n
i
q
u
e
s
:

J
e
n
s
e
n
a
n
d
W
e
s
t

1
9
8
0

r
e
p
o
r
t

t
h
a
t

a
s
u
r
p
r
i
s
i
n
g
l
y

l
a
r
g
e
n
u
m
b
e
r

o
f

s
m
a
l
l
e
r

e
l
e
m
e
n
t
s

i
n

a
f
l
o
w

m
a
t
r
i
x
c
a
n
e
v
e
n
b
e
r
e
m
o
v
e
d

b
e
f
o
r
e

o
u
t
p
u
t

m
u
l
t
i
p
l
i
e
r
s
s
h
o
w

a
s
i
g

n
i
f
i
c
a
n
t
c
h
a
n
g
e
,
b
e
c
a
u
s
e

t
h
e
v
a
l
u
e
o
f
t
h
e
s
e
e
l
e
m
e
n
t
s

is
o
f
t
e
n
n
e
g
l
i
g
i
b
l
e
c
o
m
p
a
r
e
d

t
o
t
h
e

c
o
m
b
i
n
e
d

v
a
l
u
e
o
f
a
f
e
w

l
a
r
g
e
f
l
o
w

v
a
l
u
e
s

(
s
e
e

F
i
g
.

4).
H
e
w
i
n
g
s

a
n
d
J
e
n
s
e
n

(
1
9
8
9
,

p.

3
1
4
)

n
o
t
e

t
h
a
t
n
o
t

n
e
c
e
s
s
a
r
i
l
y

t
h
e

l
a
r
g
e
s
t
e
l
e
m
e
n
t
s

a
r
e

t
h
e
m
o
s
t

i
m
p
o
r
t
a
n
t

i
n
t
e
r
m
s

o
f



10 Journal of Applied Input-Output Analysis, Vol. 11 & 12, 2006

their effect on multipliers, but that both coefficient size and location matter. Jensen and

West 1980, West 1981 and Hewings 1984 propose generating a ranking of matrix ele

ments in terms of their effect on multipliers, in order to identify elements for which

more accurate information should be collected. These considerations could determine

selection procedures similar to the simple one chosen here.

3.1.5 Distance measures

The results of the balancing process are compared with the published 1996-97 matri

ces. A number of authors11 examine concepts of relative distance between two matrices

in order to characterise the comparative performance of matrix balancing methods. Ac

cording to Butterfield and Mules (1980, p. 293), "there exists no single statistical test

for assessing the accuracy with which one matrix corresponds to another. Analysts

working in this area have tended to use a number of [complementary] tests." Accord

ingly, we chose seven measures (compare Harrigan et al. 1980, Gunluk-Senesen and

Bates 1988, and Lahr 2001):

l]\UiJ -Unij\

- the relative arithmetic mean of absolute differences AMAD = ^ JT ;
2 U

/y 1/7 jj ..12

the relative geometric mean of absolute differences12 GMAD =—

- the Isard/Romanoff Similarity Index13 SIM = 1 — ^2 *v ;

(JJ • — JJ •• )2
- the X2 distribution of absolute differences CHI = 2 lJ TT niJ—

" JJ"

- the arithmetic mean of relative differences AMRD = -J
N2

- the information index INFO = 2 U,, ij logs-yr^ ; and
ij Uij

- the correlation coefficient CORR =
/Var (Uij

where Uw is the n*1 iteration of Uo, and N = 106 the dimension of U and the tL

3.1.6 Stochastic experiments

In the following, each experiment will be characterised by a selection of parameters,

such as

11 Czamanski and Malizia 1969; McMenamin and Haring 1974; Morrison and Smith 1974; Lecomber

1975; Harrigan et al. 1980; Jackson and Comer 1993

12 The square of this measure has also been referred to as 'Theil's inequality index' (Lahiri 1984).

13 1 - SIM has been used as a "Dissimilarity Index" by Thissen and Lofgren 1998.
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the preliminary estimate: 1994/95 flow matrix U95, independent flows U1, ran

dom numbers UR;

the constraint structure: disjunct, adjacent;

the selection of constrained elements, r: 1: equally, 2 and 3: increasing degree

of preference for top-ranking flows;

constraint size: number of elements contained in constraints;

total $ value of set elements: percentage of total $ value of flow matrix U;

number of constraints;

accuracy type (table -► holistic): distance test performed on flow matrix U, Le-

ontief inverse L, output multipliers £, CO2 multipliers X.

4 Results

The following results are a selection from thousands of balancing runs carried out on a

contemporary desktop computer, programmed in simple Visual Basic. While in most

runs the threshold was reached after 30 seconds or so, only a minority of the runs took

up to 5 minutes computing time.

4.1 Influence of the balancing threshold

In order to illustrate the effect of varying the balancing threshold14, we have chosen an

example with a potentially long balancing procedure, where an initially unrealistic esti

mate (U1) is substantially altered during balancing, based on a large number (2500) of

additional data points. All distance measures reach a stationary state already when the

balance criterion an =\ui -uni\IU falls below 10 (Fig. 5, left graph, A). This may

seem surprisingly large, however considering the size distribution of elements (Fig. 4),

10 U is in the order of 107A$, which is well below the value range that contains the

bulk of the total transaction value.

As expected the correlation and similarity indices increase, while absolute differ

ences and the information gap decrease (Fig. 5). Interestingly, the subsequent row and

column balance improves the balance criterion (grey parts of A, left graph), but coun

teracts the distance measures by unbalancing the constraint subsets (black parts). This

alternating process of constraint and row/column balancing causes all performance

measures to perform a damped oscillation.

The absolute mean of relative differences (AMRD) is much higher then the abso

lute mean of absolute differences (AMAD), since the former is influenced by a large

number of small elements that are not well approximated. Moreover, the AMRD as

well as the x2 and information measures do not seem to recover from the effect of the

second row/column balancing just after step 2500. We could not understand and ex

plain this feature in detail, but re-examining the formulae in Sec. 1.1.5 shows that these

14 Polenske (1997, p. 79) already pointed out that "analysts should consider [... the issue of the] mini

mum level of discrepancy allowed between control totals and estimated totals", and that "information

concerning these issues is so limited".
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Fig. 5: Convergence of a typical cRAS run for the example of "initial estimate UI,

2500 disjunct constraints of size 1 and total $ value 50%U, selected with r=

2 preference, distance tes^on U". The curves show a record of the balance

criterion an =\m<-uni\/U, and all distance measures. The intermittent

steps (some visible in grey) show the log of row and column adjustments

(counted as 1 step for all rows, and 1 step for all columns), while the re

maining black parts represent the adjustments (1 step each) of the addi

tional constraints.
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measures are the only ones that feature a single term [//, in the denominator, and not a

sum. It appears that because of this characteristic, these three measures are quite sus

ceptible to suboptimal balancing outcomes of small (and potentially unimportant) ele

ments, which was confirmed in further simulations. The GMAD behaves very similarly

to the AMAD, but varies less. Similarly, CORR and SIM vary less over a single and

between runs. The above results were confirmed when the constraint structure, size,

numbers and value were changed, and as a consequence, the AMAD was chosen as the

preferred performance measure in most of the analyses below.

4.2 Influence of the preliminary estimate

The importance of the preliminary (pre-RAS) estimate is well known from experiences

in the estimation of regional input-output tables, and our results confirm this. If the

1994-95 flow matrix U95 is used as a start matrix in an updating exercise, the resulting

balanced estimate is much closer to the 1996-97 flow table U97 (Fig. 6, left diagram)

than in the case of the independence estimate U1: Similarity and AMAD are about 0.2

points up, and 0.6 points down, respectively, and the correlation is close to unity. At

the other extreme, a random matrix with mean U (Fig. 6, right diagram) is quite a bad

approximation, but this cRAS outcome performs similarly to that resulting from the in

dependence estimate (Fig. 5), even though the industry-size-weighted form makes more

intuitive sense (compare Hewings 1977, p. 940). Varying the additional constraints

yielded table accuracy AMADs of around 95%, 85% and 20%, for UR, U1, and U95 re

spectively. This finding confirms Polenske's (1997) review15, and also Miernyk's (1969;
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Fig. 6: Convergence of cRAS for the example in Fig. 5, except initial estimates U95

(left diagram) and UR (right diagram). The curves show a record of the

balance criterion an =\ui -uni\/U, and the distance measures AMAD,

CORR and SIM. The intermittent steps (some visible in grey) show the log

of row and column adjustments (counted as 1 step), while the remaining

black parts represent the adjustments (1 step each) of the additional con

straints.
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1976) view that - at least in terms of table accuracy - regional input-output estimates

can be an inadequate substitute for real data. In all cases the main impetus towards im

proving table accuracy are the additional constraints, and not the row and column con

straints. Additional constraints carry much more information about U97 than both U1 and

UR, making them appear almost equal in comparison.

4.3 Influence of the constraint selection and size

In practice, the analyst is most likely to be confronted with finding data for a certain

number of constraints, while limited in time and resources. In looking for superior in

formation, the analyst can choose between constraints of different size and $ value,

subject of course to data availability. A crucial question is then which constraints

would lead to good results in terms of approximating the target matrix: a few large

constraints spanning many elements, or many small constraints? Is it efficient to focus

on potentially large elements? In the following we investigate these issues by varying

constraint selection and size. We test for disjunct structures only, since results for adja

cent structures are quite similar (see also Sec. 1.4).

Generally speaking, adding more constraints improves table accuracy, provided the

15 Polenske (1997, p. 81) finds that analysts often only report on comparative differences in balancing

outcomes, but rarely state the absolute values of table inaccuracy, which are around 30%. Exception

ally "low errors are attributable to special situations, such as the a priori introduction of large

amounts of actual data, and to favourable economic conditions, such as a small degree of structural

change".
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Fig. 7: Performance of cRAS runs for the example of 'Initial estimate U1, N dis

junct constraints of varying size and undefined total $ value, selected with

r=l,2,3 preference, distance test on U". Increasing the number of con

straints has a larger impact on accuracy of U than increasing constraint

size or selectivity.
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data are not conflicting. In our example, an increase in the number of constraints from

100 to 1000 led to a 30-40% decrease in the AMAD (Fig. 7, compare curves AxO

for 100 constraints with curves <>*□ for 1000 constraints). In the case of 100 con

straints, altering the constraint size (1-100 elements) or selection (equally r = 1, in

creasing focus on large transactions r = 2, 3, see Fig. 3) did not change the AMAD

significantly. The first finding is remarkable since as it says that for the estimation ac

curacy to be expected from 100 constraints, it does not matter much whether these

contain 100 or 10,000 set elements.

With increasing number of constraints, the way of selection and their size become

important (compare Hewings and Janson 1980, p. 848; Lynch 1986, pp. 280-282).

First, focusing on large transactions is always benefitial, although r = 3 produces only

slightly better results than r = 2. Constraint size increases are also benefitial, however

exceeding 10 elements improves accuracy only marginally, at least for preferential se

lection. The declining impact of the preferential selection is due to the fact that already

at r = 2, almost all top elements have been selected. The declining impact of constraint

size increase can be understood in the sense that the information contained in larger

constraints is less specific to potentially important single elements within the con

straint, and hence table accuracy is diminished.
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Fig. 8: Performance of cRAS runs for the example in Fig. 7, but with varying to

tal constraint $ value, and undefined size. Compared to covering more $-

value with constraints, selectivity makes a minor difference to accuracy of

U.
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Rather than constraint size and hence number of set elements, the total transaction

value covered by the constraints appears to be a more important determinant (Fig. 8).

100 constraints can potentially cover 100% of the transaction value (and more for pref

erential selection, due to overlap/duplication), but only if the constraint size is near 100

(less for preferential selection). At these constraint sizes, the non-specificity prevents

the constraints from having an impact on table accuracy. Selecting 1000 constraints can

cover more than 100% transaction value at sizes of less than 10 elements, and hence

improve the AMAD significantly16. Above coverages of 1000% no more changes occur

because of the high degree of duplication in the constraint information. Running more

than 3000 low-sized constraints, the AMAD could be reduced to less than 30%.

4.4 Influence of the constraint structure

We now turn to variations of constraint structure, as illustrated in Fig. 1. Our first ob

servation is that for single-element constraints (size = 1 in Fig. 9) the curves for dis-

16 A number of runs with fixed total constraint $ values of 10%U, 30%U and 50%U were carried out,

showing that many small constraints performed better than a few large constraints.
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Fig. 9: Comparison of balancing adjacent (A) and disjunct (D) structures, under
equal (1) and preferential (2) selection (U1 initial estimate, total $-value un

defined, 500 constraints, test on U). The diagram is organised as in Fig. 7.
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junct and adjacent structures coincide for equal (DA) and preferential (xH) selection.

This is to be expected, since an adjacent structure of size 1 is essentially a disjunct

structure. For constraint sizes of 30 and larger however, the adjacent constraint struc

tures perform worse than the disjunct ones, and above size 90, their curves (AS) join.

This deterioration is due to the fact that the constraint length approaches the dimension

of the flow matrix, so that long constraints more or less coincide with already existing

row and column sum constraints, thus effectively reducing the numbers of constraints

through increasing duplication.

Increasing the focus on large elements (A+O in Fig. 10) improves the perform

ance of adjacent structures at low constraint sizes, but not at large sizes. For r = 3, a U

-shaped form becomes apparent, which is due to two effects for declining performance:

1) small numbers of set elements at low sizes, and 2) overlap with row/column sum

constraints at large sizes. In order to concentrate constraints even more on large flows,

we selected seed elements from the ranking list, starting with the top element for the

first constraint, and then proceeding down the list, with all other set elements attached

in random directions, as before (labeled Aoo). Once again, performance improves at

low constraint sizes, but not at large sizes. In practice, however, it is unlikely that in

formation can be found exclusively for top-ranking flows, so that in the following we

will restrict ourselves to the preferential selections as described in Sec. 1.1.4.
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Fig. 10: Performance of balancing adjacent (A) structures under equal (1) and

preferential (2, 3, °°) selection (U1 initial estimate, total $-value undefined,

500 constraints, test on U). The diagram is organised as in Figs. 7 and 9.
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4.5 Influence of the accuracy type

We will now compare the balancing effects on the flow matrix, the Leontief inverse,

and multipliers. It is well known that the uncertainty of a sum of many numbers can be

considerable lower than the uncertainties of any of the numbers. This effect can be ob

served when the flow matrix U is converted into a Leontief inverse L= (I-Ux"1)"1, and

- further increasing the degree of summation - into output and CO2 multipliers <? = 1L

and x = cL (Fig. II)17. The table accuracy of L in terms of the AMAD is considerably

lower at around 30% than that of U, which is due to the stochastic error cancellations

during the numerous additions and multiplications during the matrix inversion. How

ever, multipliers (and not L) are likely to be the objects of practical applications. Thus

aggregating even further, the (holistic) accuracy of output multipliers £ is extremely

low at around 2%. CO2 multipliers X are less accurate at around 20%, because in the

case of Australia CO2 intensities c are exceptionally high for only a few industries such

as beef cattle grazing, beef products, aluminium or electricity generation, so that the

overall uncertainty is largely determined by these few contributions, leading to a lower

degree of error cancellation.

Probably first observed by Hewings (1977, p. 934).
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Fig. 11: Performance of cRAS runs for the initial estimate U1, N disjunct con

straints of varying size and selectivity, and undefined $ value, tested on the

Leontief inverse L (top), output multipliers f (middle), and CO2 multipliers

X (bottom). The diagrams are organised as in Figs. 7, 9 and 10.
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Tab. 1: AMAD of cRAS runs on 500 adjacent constraint structures of varying size

and value, but with preferentially selected seed elements (r = 2), including

its standard deviation over constraint sizes 1 to 100 (curve shapes as in

Fig. 9), for different preliminary estimates and accuracy types.

Preliminary

UR

U1

u95

Accuracy type

estimate
U

97.1±5.3

85.9±9.5

20.3±1.0

L

33.5±1.1

30.8±3.3

7.2±0.3

2.0±0.3

1.8±0.3

0.4±0.04

X

23.7±1.9

22.4±2.9

3.0±0.6

We repeated the above numerical experiment for adjacent structures, and under

variation of the initial estimate (Tab. 1). In summary, holistic accuracy is always higher

than table accuracy (improving from U via L to f and X), and updating (U95) yields

much better results than estimating (U1 and UR), with the assumption of independence

performing only slightly better than a random preliminary estimate (compare Sec. 1.2).

4.6 Sequence^in)variance

As already shown for ordinary RAS by Bacharach 1970, in order to fulfil the mini

mum information gain property, the cRAS balance outcome has to be unique, and in

particular independent of the order of the constraint sequence. A large number of

cRAS runs of the adjacent, slightly selective type (r=2) were carried out, with con

straint numbers between 50 and 500, and constraint sizes between 5 and 100, and

tested on U. In all instances, the balancing result was unique.

4.7 Other issues

As with the Linear Programming and minimum information gain methods, (c) RAS

preserves any preliminary zero values. Zero-value data in a preliminary matrix to be

updated (for example U95) may sometimes reflect technological impossibilities but - as

Bacharach (1970, p. 26) pointed out - sometimes actually be an approximation of a

very small positive value18, in which case the zero should not be preserved. On the

other hand, setting preliminary zero-value data to an arbitrarily small positive value

may allow for positive updated values, but may also lead to non-zero transactions that

in reality are technically impossible. We compared two runs of the adjacent, preferen

tially selected (r = 2) type, with one run starting with the original 1995 flow matrix

U95, and the other having all zero elements in U95 set to a small value. We obtained no

discernible differences in the AMAD of the cRAS estimates. This is probably due to

the fact that zero elements in U95 are either zero in U97, or positive but small, and thus

their contribution to the AMAD is negligible in any case.

In real-world applications, data for additional constraints may not actually supe-

18 Or, in the case of temporal forecasting, technical innovation may turn a truly zero input into a posi

tive input.
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rior, but even conflicting. Due to the nature of industry surveys proceeding as separate

sales and purchasing (supply and demand) recordings, even corresponding row and col

umn totals of gross output and input may be different. Even a small discrepancy be

tween nominally equivalent constraints can prevent convergence of the (c)RAS method,

most obviously if the given balancing threshold is smaller than the discrepancy. Recon

ciliation is therefore necessary, possibly by using a RAS technique on the conflicting

constraints themselves, or by using Lagrangian or optimisation technique with uncer

tainty or reliability terms embedded in the function to be minimised19.

5 Conclusions

We have described the performance of a RAS matrix balancing variant, called 'con

strained RAS' or cRAS. In contrast to previous approaches for the estimation of input-

output tables, cRAS allows incorporating constraints on arbitrary-sized and -shaped

sets of elements into the preliminary estimate. These elements may be disjunct or adja

cent, and exhibit a widely varying degree of overlap. We have tested cRAS's perform

ance for the example of the 1996-97 Australian input-output flow matrix, using a num

ber of distance measures.

First, the preliminary estimate is of crucial importance for the accuracy of the bal

ancing outcome. Our experiments yielded table accuracies of balanced matrices of

around 90% for estimated preliminaries, and around 20% for the previous-year prelimi

nary. They showed that a preliminary based on some distribution assumption and row

and column sums may even not be much better than a random matrix.

Second, including more constraints into the balancing process always improves the

balance outcome. This is especially the case if constraints are small, numerous, dis

junct, and concentrated on important matrix cells. This result agrees with previous find

ings by Jensen and West 1980, in the sense that for many analytical purposes, it is

more important to estimate a few strategic table elements as accurately as possible,

than to estimate as many elements as possible. In this context, we also found it impor

tant to "pin-point" such strategic elements in disjunct, small constraints, rather than

have the value of say one important element "buried" in an adjacent, large constraint.

While the size of a constraint directly diminishes the ability to uncover one particular

strategic element from its summed value, an adjacent structure means that this uncer

tainty affects the industry sector to which the strategic element belongs.

Third, the accuracy of derived quantities (such as inverse matrices and aggregates

thereof) is always higher than the accuracy of the flow matrix itself. This is due to can

cellation of stochastic error components during numerous additions and multiplications

that lead to the derived quantities. Holistic accuracy - as this effect has been termed -

19 A number of authors discuss balancing techniques that include uncertainty and reliability, using

either RAS (Jensen and McGaurr 1976; 1977; Lahiri 1984), variance minimisation (Gerking 1976;

1979a; b; Miernyk 1979), or Lagrangian minimization (van der Ploeg 1982). All methods have in

common the problem that probabilities for conflicting data are mostly unavailable, so that subjective

judgment has to be consulted.
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is therefore certainly a concept to be kept in mind when compiling and using inter

industry tables. Finally, as ordinary RAS, cRAS produces a unique balancing outcome.

Given the scarcity of superior data, especially when estimating regional or physi

cal input-output tables, the main value of cRAS is that the analyst can make use of any

kind of information they can find, irrespective of the degree of aggregation.
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