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INPUT–OUTPUT MODELS – A CASE STUDY OF THE

UK’S CARBON FOOTPRINT
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This paper reviews and demonstrates methods available for estimating standard deviations for carbon multipliers
in a multi-regional input–output (MRIO) framework. We attempt to capture all possible variations of underlying
data and calculation procedures in a global MRIO model constructed with particular focus on the UK. We
consider these variations to be random, and determine the stochastic variation of the whole MRIO system
using Monte Carlo techniques. 5000 simulation runs were carried out to determine the standard deviations of
multipliers. From these, the standard deviations of components of the UK’s carbon footprint were estimated
using error propagation. We estimate an 89% probability that the UK’s carbon footprint has increased
between 1994 and 2004.

Keywords: Uncertainty; Multi-region input–output analysis; Monte Carlo analysis; Errors; UK; Carbon footprint

1. INTRODUCTION

In a parallel paper in this journal, Wiedmann et al. (2010) describe the construction of, and

results from, a multi-regional input–output model of the United Kingdom (UK-MRIO).

The aim of their work for the UK’s Department of Environment, Food and Rural

Affairs (Defra) was to set the basis for multi-country analyses of environmental impacts

associated with UK trade flows, including detailed accounts of emissions embodied in

trade flows to and from the UK. A time series of direct and indirect carbon dioxide emis-

sions associated with UK economic activities was calculated, with particular emphasis on

emissions embodied in imports to and exports from the UK.

The results documented in Wiedmann et al. (2010) indicate that – contrary to prior

belief – the UK’s climate change responsibility had increased over the past decade,

because emissions-intensive production was outsourced to other countries. Given the

political implications of communicating these initial results to the public, the authors

were asked to supply Defra with an estimation of the uncertainty associated with their

findings. This estimation is the subject of this paper.

In Subsection 1.1, we review background, and methods available for estimating the

standard deviations of multipliers derived from an MRIO framework. In Section 2 we
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then describe in detail the methodology applied to the work for the UK Government. This

methodology consists of estimating standard deviations for the raw data, for the extended

MRIO table entries, for the carbon multipliers, and for the components of the final carbon

footprint. Section 3 presents the results of the work for Defra on the UK’s carbon footprint.

Section 4 discusses the validity of the assumptions and calculations, and concludes. For

the definitions, general context and a detailed description of the UK-MRIO model and

results we refer to the main report by Wiedmann et al. (2008).

1.1. Literature Review

Soon after Leontief’s initial publications, researchers started to apply uncertainty calculus

to input–output analysis. One prominent technique that has been utilised is Monte Carlo

analysis (Bullard and Sebald, 1988).1 This is because researchers recognised that

Leontief’s basic input–output relationship x ¼ (I–A)21 y, linking final demand y with

gross output x, cannot be differentiated analytically with regard to multiple elements aij

of A (Quandt, 1958, 1959; Bullard and Sebald, 1977).

In the majority of Monte Carlo analyses of input–output systems, researchers have

assumed that the uncertainty of basic input–output data can be formulated in terms of

normally distributed, uncorrelated, stochastic errors, with defined standard deviations

(Quandt, 1958; Goicoechea and Hansen, 1978; Hanseman and Gustafson, 1981; Hanse-

man, 1982; Lenzen, 2001). In a nutshell, these standard deviations are sourced for com-

ponents of y and of A, and used for perturbing y and A to y∗ and A∗. From the latter,

perturbed input–output multipliers m∗ ¼ (I–A∗)21 are calculated, and compared with

the initial multipliers m ¼ (I–A)21 (Sakai et al., 2000). Relative standard deviations

Dm ¼ (m∗ –m)/m for these multipliers are then estimated from typically many thousand

perturbation runs (Evans, 1954; Park, 1973; Bullard and Sebald, 1977). Monte Carlo

techniques have also been applied in Life-Cycle Assessment (LCA), where researchers

use generalised input–output systems that link a monetary table with physical satellite

accounts (Hondo and Sakai, 2001; Lenzen, 2001; Nansai et al., 2001; Yoshida et al.,

2001; Hondo et al., 2002; Yoshida et al., 2002; Peters, 2007a).

Some authors object to the assumption of uncorrelated, normally distributed error terms

(Stevens and Trainer, 1980; Park et al., 1981; Rey et al., 2004), for example because the

data collection and balancing procedures followed by national statistical agencies are

affected by systematic underreporting, or because the accuracy of row and column

totals implies that if one element is too large, others in the same row or column must

be too small. Others examine effects of error data that are distributed other than normally,

and correlation structures between the errors of certain entries aij in A, on resulting

standard deviations dm for input–output multipliers (West, 1986; Jackson and West,

1989; Kop Jansen, 1994; Ten Raa and Steel, 1994). Whilst these possibilities and

effects cannot be ruled out, there is at present no data that would allow their incorporation

into real-world case studies.

In general practice, only a minor proportion of authors actually add uncertainty analyses

to their input–output case studies. In particular, there is a dearth of environmental MRIO

1 As an alternative, fuzzy set theory has also been employed to estimate the uncertainty of an IO system used to

calculate Ecological Footprints (Beynon and Munday, 2008).
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studies where an uncertainty analysis is undertaken that is similarly thorough as the one

presented in this paper (Wiedmann et al., 2007; Wiedmann, 2009). Lenzen et al. (2004)

examine the effect of two types of errors on Danish carbon multipliers and trade balances:

the effect of the omission of feedback facilitated by international trade, and sector

aggregation. Whilst the inclusion of Danish exports led only to minor corrections, the

explicit modeling of Danish imports, as well as sector disaggregation were concluded to

be important for overall accuracy.

Weber and Matthews (2007) vary their MRIO calculations by using different input par-

ameters for two of the major uncertainties in their model – the Rest-of-World approxi-

mation and the choice between market exchange rates and Purchasing Power Parities –

and present ‘feasible ranges for EEE and EEI’ (Weber and Matthews, 2007, p. 4876),

but they do not carry out a Monte Carlo analysis. Weber (2008) presents a detailed discus-

sion and empirical investigation of uncertainties in MRIO modeling. Weber examines

three major uncertainties by using a series of models built using input–output data

from the United States and seven of its largest trading partners. They relate to aggregation

and concordance to a common sector scheme, treatment of the rest-of-world (ROW)

region, and monetary exchange rates. These are MRIO-specific sources of error that add

to uncertainties in standard, single-region input–output analysis (Weber, 2008, p. 27,

Table 3). Weber (2008) states that ‘. . . it is likely that these inherent uncertainties often

end up raising total uncertainty beyond the levels of a detailed (i.e. .200 sector)

single-region model’ and concludes that ‘. . .detailed single region models with simplified

trade modeling should also be considered, especially if the analysis only requires a few

commodities to be modeled and a hybrid analysis using SPA2 is possible.’

Aggregation is a problem in particular when high and low impacting sectors are

combined in one aggregated sector. Examples are pulp/paper and publishing, cement

and non-metallic minerals, post and telecommunications (for these three see Weber,

2008), or aluminium and other non-ferrous metals. Lenzen et al. (2004) analyse the

error associated with aggregation by merging their 39–133 sector MRIO to 10 aggregated

sectors and find significant errors, particularly due to aggregating electricity together with

gas and water production. The sensitivity of MRIO calculations towards the use of MER or

PPP as a means to convert currencies is tested by Weber and Matthews (2007). Weber

(2008) finds that the ratio of the rates (MER/PPP) can be as high as 4.7 for China

versus the US and contemplates the use of hybrid currencies within the compound A
matrix, along with sector-specific exchange rates (see also Lenzen et al., 2004). The

trade flow matrices, i.e. the off-diagonal elements in a full, multidirectional MRIO

model, also deserve special attention. Imports from one region to another are, in most

cases, not known as matrices to using sectors, but only as vectors from supplying

sectors. Imputation techniques with inherent assumptions are required to produce these

trade flow matrices. One solution to the estimation problem for off-diagonal trade flow

matrices is to use trade coefficients (Lenzen et al., 2004). This procedure assumes that

the trade coefficients are identical for all entries along a row of the imports matrix, i.e.

for all using domestic industries – clearly an assumption with considerable impact on

the accuracy of MRIO models.

2 Structural Path Analysis (see e.g. Defourny and Thorbecke, 1984; Treloar, 1997; Lenzen, 2006; Peters and

Hertwich, 2006).
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2. METHODOLOGY

In the following we establish uncertainty estimates for CO2 multipliers m calculated from

an MRIO table T according to m = q[I − Tx̂−1]−1
, where q are sectoral CO2 intensities,

x is sectoral gross output, and I is a suitable identity matrix. These uncertainties are

expressed as standard deviations (SDs) dm, denoting the 67% confidence interval around

a mean value of m. In other words, 67% of a large number of observations of m would

fall into the interval [m–dm, m+dm] (and furthermore, 95% of observations are captured

by +2dm and 99% by +3dm). In order to calculate the dm, it is necessary to determine the

SDs dT of the MRIO table T itself, which stem directly from uncertainties in the raw data.

Hence, the calculations carried out in this work proceed in three major stages: (1) determine

SDs of raw data; (2) determine SDs dT of T; and (3) determine SDs dm of m. Before pro-

ceeding with the description of these stages, we make three general remarks.

First, we define the order of magnitude of a data item x as its logarithm log10(x). For

example, the order of magnitude of £1000 is 3, the order of magnitude of £10,000 is 4.

Let the absolute SD of a data item x be dx, so that its Relative Standard Deviation (RSD) is

rx ¼ dx/x. The absolute error in the logarithms (the ‘order-of-magnitude’ error) can be

approximated by

d(log10 x) ≈ log10(x + dx) − log10(x) = log10

x + dx

x

( )
= log10(1 + rx). (1)

RSDs rx can sometimes be obtained or derived from public data sources. If there are no data,

RSD estimates can be solicited from informed judgement of statistical agency staff

(Lenzen, 2001). The rationale for estimating SD coefficients for the logarithms and not

for the data values as such is based on the assumption that observations of MRIO entries

are distributed log-normally, and not normally. The assumption of log-normality effec-

tively ensures that Monte Carlo-perturbed entries never change sign. Had we used

normal distributions instead, their lower tails would have extended towards negative

values, which pose problems for input–output analysis (Ten Raa and Van der Ploeg,

1989; Kop Jansen and Ten Raa, 1990). In that case, the only solution would have been to

truncate these negative distribution tails; this however would have led to undesirable bias

in the Monte Carlo perturbations, and to artificially skewed distributions for the multipliers.

Second, we deal with the fact that in many cases, SDs are not available for the raw data

used to construct the UK-MRIO table, by using SDs available for proxy data. More specifi-

cally, we use the pattern of these proxies and their SDs to infer the SDs of the raw data. In

general, raw and proxy data and their SDs exhibit the same following trends: large data items

are generally known with higher accuracy than small data items. This is due to the fact that

large items often consist of many smaller data points (for example purchases by companies,

emissions data from individual sources, etc). Provided there is no correlation between table

elements, or in other words no systematic error component, stochastic errors cancel out

during aggregation. This holds in general for any type of data: for example, employment

figures in the retail and service sectors of an economy are large, because the totals consist

of many businesses each employing a small number of people. Another example is

energy use in the electricity sector. Even though there may not be many power plants in

the country, the amount of black coal or natural gas is usually comprised of many supply

batches adding up over the year. The inference of the raw data SDs from the proxy data

46 M. LENZEN et al.
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SDs can be facilitated using regression techniques. In this work we tried several specifica-

tions for regressing the relative standard deviation of the raw data and found that a power

regression with two coefficients, a and b, yielded the best fit in all cases:

rx = axb (2a)

We then calculate the log-normal standard deviation as well as the regressed order-of-

magnitude error against the raw data x according to

log10(1 + rx) = log10(1 + axb) (2b)

Third, although our uncertainty analysis of the UK-MRIO model tries to capture all

possible stochastic variations of underlying data and calculation procedures, we do not

deal with possible systematic error sources such as structural changes and sectoral price

changes in foreign IO data over time, systematic over- and underestimation of CO2 inten-

sities of foreign industries due to the mismatch of sectors in UK and foreign IO and CO2

data, change of import structure over time, or choice of currency conversion factors.

2.1. Uncertainties of Raw Data

In order to perform a Monte Carlo analysis of the UK-MRIO model, the uncertainties of all

underlying input data had first to be determined. There are six types of data with their

specific uncertainties:

. UK input–output data;

. UK CO2 emissions data;

. input–output data for three world regions;

. Producer Price Indices (PPI) to be used as deflators to accommodate structural change;

. CO2 emissions data for three world regions; and

. international trade data.

First, input–output data for the UK were taken from the annual Supply and Use Tables

(SUT) reported by the Office for National Statistics (ONS, 2007c) and supplemented

for the purpose of the UK-MRIO as described in (Wiedmann et al., 2008). No explicit

publication of the uncertainty associated with UK IO data is available, but the Annual

Business Inquiry (ABI) published by ONS (ONS, 2007b) includes an estimate of the

standard error (SE) associated with its underlying data used to compile IO accounts.

More precisely, the SE is reported for ‘Total turnover’, ‘Approximate gross value added

at basic prices’, ‘Total purchases of goods, materials and services’, and ‘Total net

capital expenditure’ at a SIC 3-digit level for the years 1998 to 2005. We regard the

2166 data points x and absolute standard errors Dx from this publication as representative

for the error associated with UK input–output data in general and used them as the basis

for regressing the SDs for all SUT entries. These data provide an excellent example for

decreasing SDs with increasing data values (Figure 1).

Second, UK CO2 emissions data were taken from the UK Environmental Accounts

(ONS, 2007a) which, in turn, are based on the official UK Greenhouse Gas Inventory

submitted under the Framework Convention on Climate Change (Jackson et al., 2009b).
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The latter provides an estimate of uncertainty at a broad sectoral level, using an error

propagation approach (Jackson et al., 2009a, pp. 491–498). The resulting standard

deviations of this approach have also been regressed according to equation (2) (Figure 2,

27 data points).

Third, we used the input–output database of the Global Trade Analysis Project (GTAP 6;

Dimaranan, 2006) for three world regions in our UK-MRIO. GTAP performs a number of

process steps that influence the accuracy and precision of their data. Peters (2008a) describes

the procedure: input–output data are contributed to GTAP voluntarily and can be rather

outdated. GTAP scales the data to match GDP in international dollars, which means the

data have the structure of its base-year, but the volume of the target year. The conversion

FIGURE 2. Standard deviations for UK CO2 emissions estimates (adapted from Table A 7.6.1 in
Jackson et al. 2009a, p. 495).

Note: rx ¼ 0.486x20.261, R2 ¼ 0.212.

FIGURE 1. Standard deviations for UK input–output data regressed from Annual Business Inquiry
data (ONS, 2007b).

Note: rx ¼ 0.393x20.302, R2 ¼ 0.257.
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of original data into a harmonised GTAP format requires various aggregations and

disaggregations. The error associated with these procedures is unknown but potentially

significant, in particular when the original data are significantly more aggregated. GTAP

also includes additional data (trade and energy), removes other (changes in stocks), and

then re-balances the entire global account. Despite these obviously significant error

sources, GTAP data are widely accepted as a reputable source for economic analyses.

However, in most economic studies no uncertainty analysis is provided.

To estimate SDs for the UK-MRIO we used GTAP information on the extent of change

in the structure of individual tables that were ‘fitted’ in order to accommodate international

data such as trade targets, energy usage targets, and other international data sets

(McDougall, 2006, Table 19.6: ‘Selected category total comparisons between unfitted

and fitted input–output tables’; more than 100 data points at the sector level). Assuming

that the differences between ‘unfitted’ and ‘fitted’ represent a SD proxy, we achieve a

reasonable regression (Figure 3).

Although the comparison between ‘fitted’ and ‘unfitted’ values by GTAP is confined to

row and column totals, not individual cells, the authors also state that they ‘select those

[pairs of values] that make the largest contribution to the entropy distance measure

[. . .]. This identifies large sectors in large regions with large relative changes.’ (McDou-

gall, 2006, p. 19–9) We therefore regard our regression in Figure 3 as an upper (conser-

vative) estimate of uncertainties in foreign IO data. Peters (2007b) discusses in detail the

uncertainty associated with the GTAP 6 database (see also appendices in Reinvang and

Peters, 2008, and WWF Trade and Investment Programme and Norwegian University

of Science and Technology Industrial Ecology Programme, 2008).

Fourth, the UK-MRIO uses GTAP data from 1997 and 2001 for the creation of a time

series from 1992 to 2004. In reality however, the economic structure – and thus the input–

output tables – will have changed over time. Although it can be assumed that these

changes are of a systematic nature (that is, changes are likely to go in one direction, for

FIGURE 3. Distribution of differences (expressed as standard deviation) between original
(‘unfitted’) IO tables and those ‘fitted’ by GTAP (McDougall, 2006).

Note: rx ¼ 8.927x20.672, R2 ¼ 0.863.
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example sectors become consistently either more or less important over time), we do not

make sector-specific assumptions about the directions of change. Rather, we consider the

changes observed between 1997 and 2001 as stochastic uncertainties that can fluctuate

over time. With increasing distance from the base years 1997 and 2001, we assume that

uncertainties grow at a linear rate, thus covering all possibilities of structural change

over time. To this end, we corrected prices in the GTAP data for 2001 for inflation

back to 1997 using average, economy-wide producer price indices (PPI; OECD Statistics,

2008) for OECD EU, Non-EU OECD and four major Non-OECD trading partners, of

which the average was used to estimate PPI data for the rest of the world. We then

define and regress the absolute difference between the deflated table of 2001 and the

original 1997 GTAP table as the RSDs of the 1997 data (Figure 4, �6000 data points).

Apart from the fact that these PPIs are averaged over the whole economy and are not

specific to individual sectors, we further account for the uncertainty of the deflators

through variations of PPI data between countries (OECD Statistics, 2008). For each year

between 1992 and 2004 we derived the average PPI of 15 EU countries as well as its SD

across sectors. We then calculated the average SD over all years and, based on the results,

use an RSD of 10% as a general estimate of uncertainty for all years and world regions.

We apply these regressions to the GTAP use data, but as we assume diagonal supply in

the non-UK regions, we apply errors on supply elements calculated from gross output

summing over use table transactions and final demand, i.e. for sector i,

dTi,n+i =
��������������������������∑
j=1:n

dtn+t,j

( )2+ dyn+i

( )2

√

where tij is the typical element of the transaction matrix T in supply/use format, n refers to

number of sectors, and yi is the typical element of y, the final demand vector. We empha-

size that no co-production can occur under the basic homogeneity assumption, and hence

that all off-diagonal errors of the supply matrix are zero.

FIGURE 4. Distribution of differences (expressed as standard deviation) between original (year
1997) and deflated (year 2001) GTAP input–output data, representing structural change over a
four year period.

Note: rx ¼ 1.144x20.233, R2 ¼ 0.237.
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Fifth, CO2 emissions data for the three world regions were compiled from IEA data

(IEA, 2006). No documentation of uncertainty could be found for this data set.

However, the IEA data are in principle compiled in the same way as national GHG

inventories and therefore the regression formula for the UK CO2 data was used (see

caption of Figure 2). Another challenge in terms of uncertainty is posed by the mismatch

of numbers of sectors in the UK tables (123 sectors) and GTAP tables (30 sectors). This

leads to a misallocation of foreign CO2 intensities to UK sectors, and hence an over- or

underestimation of CO2 embodied in UK sectoral imports. For example, GTAP dis-

tinguishes only one transport sector (and hence provides only one CO2 intensity for

transport), whereas the UK table distinguishes five transport sectors with different

CO2 intensities. In principle it would be possible to alleviate this aggregation error for

each aggregated GTAP sector block by using the variation of CO2 intensities within a

block of corresponding disaggregated UK sectors (Lenzen, 2001). However, it was not

possible to carry out such a correction within the limited scope of project within

which this work was funded.

Sixth, total imports into the UK by year and sector (UK Supply and Use Tables; ONS,

2007c) are associated with the SDs of UK input–output data as described above. In

addition to this, further uncertainty is introduced through the fact that the sector totals

for imports had to be divided into the three world regions used in the model. To accom-

plish this task, detailed trade data were compiled from various data sources and aggregated

to the 123 sectors used in the input–output model (the exact procedure is described

in detail in Wiedmann et al., 2008). When comparing the sum over the three ROW

regions from this bottom-up compilation with the sector total for imports in the UK

Supply tables for all years, an average difference of +20% can be observed. This is

likely to do with differences in classification, leading to differences in the way trade

data were compiled (the SUTs follow SIC classification whereas the bottom-up data

were classified by SITC classification). The sectoral differences identified by the compari-

son between the two trade data sets were regressed over the value of the transaction (1,200

data points; Figure 5).

FIGURE 5 Distribution of differences (expressed as standard deviation) between two data sets for
UK imports, using different original data sources.

Note: rx ¼ 1.787x20.349, R2 ¼ 0.142.
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2.2. Uncertainty of the MRIO Table

The UK input–output tables for the UK-MRIO model were obtained using the

KRAS multi-proportional balancing algorithm (Lenzen et al., 2009). KRAS forces

the MRIO entries (‘vectorised’ as p) to satisfy constraints c according to Gp ¼ c,

where G is a constraints coefficients matrix, and c holds the constraints values

provided by the raw data. The balancing algorithm starts with an initial estimate

p0 for p, and arrives at a final solution p(final), which is a vectorised form of the

final MRIO table T.

In most IO applications, and also in our work, the problem of constructing an IO table is

underdetermined, that is there are many more IO table entries than raw data items to con-

struct them. Hence, SDs of our MRIO cannot be readily assembled from the raw data. A

first estimate of the vectorised SDs dp of the final MRIO p(final) can be obtained by the shift

that the p0 experience during the KRAS balancing run: dp(0) ¼ p(final) – p0. However, this

first estimate dp(0) of the ‘true SDs’ dp would generally not comply with the SDs dc of the

constraints, as constructed from the raw data c according to Section 2.1. In other words,

dp(0) would not propagate properly so that

�������������������
G dp(0) # G dp(0)

√
=

��������������
Sj(gij dp(0)j )2

√{ }
i

= dc(0) = dc =
���������������
G dp # G dp

√

Where # denotes the element-wise product. A constraint-compliant vector dp can be

determined by using a RAS-type balancing process as follows:

(1) Calculate a scalar dc1/dc(0)
1

(2) Adjust dpj
(1) ¼ dpj

(0) × dc1/dc(0)
1∀j where g1j = 0, so that dc1 ¼

����������������∑
j g1jdp(0)

j

( )2
√

(3) Calculate a scaler dc2/dc(0)
2.

(4) Adjust dpj
(1) ¼ dpj

(0) × dc2/dc(0)
2∀j where g2j = 0, so that dc2 ¼

����������������∑
j g2jdp(0)

j

( )2
√

(5) And so on ∀ ci

(6) And so on for n iterations ∀ dci / dc(n)
i

(7) Exit at the nth step if |dc – dc(n)| ≤ some small 1 (else go to 1) and calculate dc1/
dc(n+1)

1

(8) The dp(n) are the solution for Dp; they are the SDs DT of the entries of the MRIO

table T.

The SDs dq of the direct, sectoral CO2 intensities q are determined in a similar

fashion.

2.3. Uncertainties of CO2 Multipliers

CO2 multipliers m are calculated from T according to m = q[I − Tx̂−1]−1
, where q are

sectoral CO2 intensities, x̂ is diagonalised sectoral gross output, and I is a suitable identity

matrix. An exact analytical solution to the differential of m with regard to the elements

of T does not exist, so that an approximation needs to be obtained using numerical

techniques, notably Monte Carlo simulation. In our case, all SDs refer to the logarithms

of variables, so that log10x∗ ¼ log10x + dx, and hence we use Monte Carlo perturbations
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x∗¼ 10log10
x+dx ¼ x # 10dx.3 Here, the dx denotes a vector of random variables distributed

normally around mean 0 with SDs dx, and # denotes the element-wise product. Accord-

ingly, we perturb entries of the MRIO table T � T∗ ¼ T # 10dT, gross output x � x∗

¼ x # 10dx, and direct intensities q � q∗ ¼ q # 10dq.4 We feed these into Monte Carlo

simulations where we calculate perturbed CO2 multipliers m∗ = q∗(I − T∗x̂∗−1)−1 =
x̂−1#10−dx)]−1 [I − (T#10dT)(x̂−1#10−dx)]−1. We repeat this procedure a large number

of times (5000 times per year), and compare perturbed and unperturbed multipliers in

order to generate distributions of RSDs dm ¼ (m∗2m)/m. The means of these distri-

butions are then considered to be the actual RSDs dm of the CO2 multipliers m.

In carrying out our Monte Carlo simulation, we have followed a conservative approach,

which results in slightly higher RSD estimates, in two aspects:

1 Bullard and Sebald (1977; 1988) and Lenzen (2001) exclude ‘infeasible’ Monte Carlo

runs with |dx| / x . 3%, since they assume that gross output is a macro quantity that

is known with relatively high confidence. However, we do not restrict gross output at

all, but instead include all Monte Carlo runs, thus including runs yielding multiplier

deviations dm and RSDs dm that are higher than those that would have resulted from

output-restricted runs.

2 Perturbing the MRIO table T generally results in the perturbed table T∗ ¼ T# 10dT

being unbalanced, that is its row sums will not necessarily equal its column sums.

In theory, row sums and column sums must balance (gross input ¼ gross output).

Applying a RAS-type balancing procedure in order to force T∗ to conform with

row and column balances would result in a reduced perturbance of T∗, and hence

in reduced multiplier deviations dm. We decided not to balance the perturbed

table in order to reflect uncertainty of gross input and output, thus yielding higher-

than-expected multiplier RSDs dm.

2.4. Uncertainty of Carbon Footprint Components

In the final stage of our calculations we combine the CO2 multiplier SDs dm with the

SDs dy of final demand y in order to obtain SDs for the carbon footprint components.

Calculating these components involves simple additions and subtractions, so that the cor-

responding error propagation can be dealt with in the usual way by applying the ‘square

root of square sums’ formula. Let Ei ¼ miyi denote the emissions embodied in sector

i’s final demand yi. Let J ¼ { j} be a set of sectors j, and AEj ¼
∑

i[JEi its aggregated

embodied emissions. Let dE and dAE be the SDs of E and AE. Using the general error

3 In fact, since we regress order-of-magnitude errors as dx ¼ log10(1 + rx) ¼ log10(1 + axb), we find that x #

10dx ¼ x + rx, which is nothing but perturbing matrix elements according to their relative standard deviations.

However, the original report to the UK government used specifications of dx other than log10 forms, and the

formulation used here covers these in all generality. It was only during the revision phase of this paper that

new data could be located, and the log10 form emerged as the preferred specification for order-of-magnitude

errors dx.
4 Dietzenbacher (1995; 2005) reports on bias introduced into input–output multipliers during stochastic analyses,

but concludes that in a ‘practitioner’s approach’ where the transaction matrix is perturbed instead of the input–

output coefficients matrix, such bias is negligibly small.
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propagation for a function f(xi) as

df =

�������������
∂f

∂xi

( )2

dx2
i

√
(3)

we find

dEi =
�����������������
m2

i dy2
i + dm2

i y2
i

√
⇔ dEi

Ei

=

������������
dy2

i

y2
i

+ dm2
i

m2
i

√
(4)

and

AEj =
���������∑
i[J

dE2
i

√
(5)

3. RESULTS

3.1. Standard Deviations of UK Input–Output Table Entries

As expected, the procedure outlined in Section 2.2 yields RSDs of UK input–output

tables (black circles in Figure 6 and 7) that group around the regressed RSDs for the

raw data c (grey circles; there are two lines in the diagram because there are two

specifications for dc, domestic and imports). This is because the constraints are sums

of MRIO table elements, linked through the constraints matrix G via Gp¼c. Therefore,

the SDs of the constraints are square-rooted sums of squares of SDs of the table

elements. In a typical sum, some SDs of input–output table elements are smaller than

those of the constraints, some are larger. SDs of large table elements are below the

FIGURE 6. Calculated RSDs of UK input–output table entries, 1992.

54 M. LENZEN et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
1:

57
 2

1 
A

ug
us

t 2
01

7 



SDs of raw data, because these elements are relatively stable under KRAS balancing, at

the cost of small table elements with large specified RSDs that get ‘thrown around’

during the balancing procedure.

3.2. Carbon Footprint Components

Before the final uncertainty results are presented, we repeat the nomenclature used in

the original report to Defra (Wiedmann et al., 2008; see also Wiedmann et al., 2010).

Figure 8 and the text below explain the various components of the UK’s carbon footprint

(direct and embodied emissions) caused by UK production and consumption.

CE have increased notably between 1994 and 2004, mostly after 2000 (Figure 9). The

RSD for total CE ranges from 3.0% in 1994 to 5.1% in 1999 and 2001. In order to test

whether the highest CE emissions in 2001 emissions are statistically significantly higher

than the lowest emissions in 1994, we calculate for each value E2001 within the distribution

the probability that E1994 , E2001. Each value E2001 occurs with a probability p2001, which

is simply calculated by enumerating a normal distribution N(m2001,s2001) specified by

the 2001 emissions mean m2001 and standard deviation s2001. The probability p1994 that

1994 emissions are below E2001 is expressed by the complementary error function

Erfc(m1994,s1994) evaluated at E2001. Therefore, the total probability p1994,2001 of 1994

emissions being below 2001 emissions is an integral over the probability of 2001 emis-

sions p2001 conditional on p1994, or

p1994<2001 =
∫1
−1

p2001(E)p1994(E) dE =
∫1
−1

N(m2001, s1994 |E)Erfc(m1994,s1994|E)dE

Setting m 1994 ¼ 634 Mt CO2, s 1994 ¼ 19.0 Mt CO2, m 2001 ¼ 732 Mt CO2, s 2001 ¼ 37.3

Mt CO2, we find p1994,2001 ¼ 0.93. Hence, in a statistical sense, 2001 emissions are

FIGURE 7. Calculated RSDs of UK input–output table entries, 2004.
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significantly above 1994 emissions. Repeating the same calculation for 1992 and 2004

values (the beginning and end of the time series) results in p1992,2004 ¼ 0.89, i.e. there

is a probability of 89% that CE in 1992 were indeed lower than in 2004.

Over the time period 1994 to 2004 there is a tendency towards larger error margins. It is

likely that this increase is due to the distance from the analytical input–output tables (ATs)

for 1995. At the time of this work, the 1995 ATs were the only available information on the

structure of imports to the UK. The import matrices for all other years were derived

through KRAS balancing to match actual year totals. It is logical to assume that uncertain-

ties increase when these totals move away from the 1995 base year totals, although this has

not been proven in this study.

The RSD for CO2 emissions embodied in UK trade is larger than for total consumer

emissions because additional uncertainties for input–output and CO2 data for the three

world regions come into play (Table 1 and Figure 10). Generally, the greater the aggre-

gation of the results, the smaller the RSD because the SDs of emission components are

FIGURE 8. Depiction of origin and attributed destination of GHG emissions caused by UK econ-
omic activity.

Note: see text and Wiedmann et al., 2010, for details. Region e ¼ OECD Europe, Region o ¼ OECD
non-Europe, Region w ¼ non-OECD countries.

1 UK production emissions, including international aviation and shipping provided by UK oper-
ators, attributable to UK final consumption;

2 UK production emissions attributable to exports;
3a Imported emissions through intermediate consumption of UK industry attributable to UK final

consumption;
3b Imported emissions through intermediate consumption of UK industry attributable to UK

exports;
4a Imported emissions direct to final demand attributable to UK final consumption;
4b Imported emissions direct to final demand attributable to UK exports;
5a UK emissions generated by households not from private motoring (e.g. housing);
5b UK emissions generated by households from private motoring.

Producer Emissions (PE): 1 + 2 + 5a + 5b.
Consumer Emissions (CE): 1 + 3a + 4a + 5a + 5b.
Emissions Embodied in Imports (EEI): 3a + 3b + 4a + 4b.
Emissions Embodied in Exports (EEE): 2 + 3b + 4b.
Balance of Emissions Embodied in Trade (BEET): 2 – 3a – 4a.
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added together via the ‘square root of square sums’ formula (see equation (4)).

However, if a subtraction is involved in the calculation, as is the case for BEET (¼

2-3a-4a), RSDs can become very large and even indefinite if the subtraction results

in zero. Notwithstanding RSDs of around 7%, the increase in EEI is statistically signifi-

cant, at least for the last four years compared with the first three years of the time

series. In addition, EEI are not only significantly higher than EEE in all years from

1992 to 2004, but EEI also grow faster than EEE thus widening the gap between

territorial (producer) emissions and consumer emissions. As a result, the trade balance

BEET is increasingly negative.

4. DISCUSSION AND CONCLUSIONS

4.1. Discussion

Our analysis of uncertainties associated with the UK-MRIO model attempts to capture all

possible variations of underlying data and calculation procedures: for the majority of data

we take into account a number of stochastic variations. However, there may also be

sources of systematic errors, e.g.:

(1) structural change of foreign input–output data that cannot be captured systemati-

cally due to the lack of time series data;

(2) divergence in prices within sectoral foreign input–output data over time;

(3) systematic over- and underestimation of CO2 intensities of foreign industries due to

the mismatch of sectors in UK and foreign input–output and CO2 data;

(4) change of import structure over time due to the lack of imports matrices (Analytical

Tables) for the UK for years other than 1995; and

FIGURE 9. UK consumer CO2 emissions between 1992 and 2004.

Note: Uncertainty ranges are presented as confidence intervals of width s (+/21SD, 67% of all
observations) and 2s (+/22SD, 95% of all observations).
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TABLE 1. CO2 emissions embodied in UK trade and associated uncertainties (Mt CO2).

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

EEI (3a + 3b + 4a + 4b) 206 227 235 228 253 259 294 266 293 336 343 325 329
Absolute SD of EEI 14.1 15.4 14.9 19.4 16.3 16.7 18.4 17.9 16.1 19.6 21.2 23.0 22.0
RSD of EEI 6.8% 6.8% 6.4% 8.5% 6.4% 6.4% 6.3% 6.7% 5.5% 5.8% 6.2% 7.1% 6.7%

EEE (2 + 3b + 4b) 179 196 202 205 222 199 218 197 219 229 222 226 230
Absolute SD of EEE 8.0 8.8 9.5 10.8 12.3 11.7 12.9 8.7 7.8 9.6 9.5 11.5 11.7
RSD of EEE 4.5% 4.5% 4.7% 5.3% 5.5% 5.9% 5.9% 4.4% 3.6% 4.2% 4.3% 5.1% 5.1%

BEET (2 2 3a 2 4a) 227 231 233 223 230 260 276 269 274 2108 2121 299 2100
Absolute SD of BEET 12.7 13.7 12.6 12.6 12.7 18.4 14.7 16.8 15.5 18.4 20.2 21.5 20.4
RSD of BEET 47.1% 43.9% 38.2% 55.1% 41.8% 30.6% 19.4% 24.4% 21.1% 17.1% 16.8% 21.6% 20.5%

EEI/EEE ¼ emissions embodied in imports/exports, BEET ¼ balance of emissions embodied in trade, SD ¼ standard deviation, RSD ¼ relative standard deviation.
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(5) choice of price conversion factors, e.g. Purchasing Power Parity (PPP) versus

market exchange rate (MER), or choice of lead countries for PPI.

With regard to issue (5), results of calculations using PPP and MER can differ substantially

because of crucial assumptions. Using MER means that a commodity produced in China

would have 10 times more embodied emissions when sold in the UK for 10 times the price

of consumption in China: The distorting factor is price differentials. Using PPP means

that a commodity sold for the same price in China and in the UK would attract different

embodied emissions: The distorting factor is the PPP adjustment to lower incomes in

China. For further examples and elaborations on this issue see Nordhaus (2005), Li and

Hewitt (2008) and Weber and Matthews (2008).

With regard to issue (3) and other systematic errors, we note that whilst it is in principle

possible to investigate these systematic errors, this was beyond the scope of the work for

Defra and this paper. We believe that we have left room for some systematic error by

allowing our stochastic variations to be conservative, in the sense that they are rather

over- than underestimated.

Finally, we note that, whilst aggregated results for CO2 consumer emissions exhibit

relatively low RSDs between 3.0% and 5.1%, RSDs at an individual sector level are gen-

erally higher. RSDs can be large especially for sectors with low CO2 emissions. Results at

a sectoral level (in Wiedmann et al., 2008) should therefore be interpreted with caution.

4.2. Conclusions

This is the first study that has undertaken a comprehensive uncertainty analysis of a global

multi-region input–output model, using state-of-the-art techniques such as KRAS

balancing under conflicting information, regression analysis for the estimation of raw

data standard deviations, and Monte-Carlo simulation for determining uncertainties for

FIGURE 10. CO2 emissions embodied in total UK imports (EEI), total UK exports (EEE) and the
difference EEI-EEE (equal to –BEET) from 1992 to 2004.

Note: The error bars represent confidence intervals of width 1 s (+/21SD, 67% of all observations).
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CO2 multipliers and CO2 emissions embodied in UK economic activity, as well as trade

from and to the UK.

The usefulness and robustness of the techniques used in this work is demonstrated by

the fact that they were successfully applied in commissioned work for a major govern-

ment project, and that the funding agency chose to publish all data, methodology and

results.

The results of our uncertainty analysis show with statistical significance that CO2

emissions embodied in UK imports (EEI) were higher than those for exports (EEE)

in all years from 1992 to 2004 and that EEI were growing faster than EEE thus widening

the gap between territorial (producer) emissions and consumer emissions. Thus, against

popular belief, the carbon footprint of the UK has been increasing rather than

decreasing.

This finding may provide motivation for further investigations of other countries,

perhaps a selection of technology-endowed developed countries and resource-endowed

developing countries. Models such as the UK-MRIO can help shed light on the phenom-

enon of ‘carbon leakage’, that is developed countries reducing their reportable domestic

emissions by outsourcing emissions-intensive production beyond their borders. Mounting

evidence for the importance of international trade may ultimately serve to improve inter-

national reporting guidelines and emissions reduction agreements (Munksgaard and

Pedersen, 2001; Peters, 2008b; Peters and Hertwich, 2008; Reinvang and Peters, 2008).

Whilst current full producer responsibility may not be completely abandoned for full

consumer responsibility, shared-responsibility principles may prove to be a compromise

that is acceptable by a wide range of decision-makers (Lenzen et al., 2007; Andrew and

Forgie, 2008).
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