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MATRIX BALANCING UNDER CONFLICTING
INFORMATION

MANFRED LENZEN, BLANCA GALLEGO AND RICHARD WOOD�

Centre for Integrated Sustainability Analysis, University of Sydney, Australia

(Received 20 August 2007; In final form 13 November 2008)

We have developed a generalised iterative scaling method (KRAS) that is able to balance and reconcile input–
output tables and SAMs under conflicting external information and inconsistent constraints. Like earlier RAS
variants, KRAS can: (a) handle constraints on arbitrarily sized and shaped subsets of matrix elements; (b)
include reliability of the initial estimate and the external constraints; and (c) deal with negative values, and
preserve the sign of matrix elements. Applying KRAS in four case studies, we find that, as with constrained
optimisation, KRAS is able to find a compromise solution between inconsistent constraints. This feature does
not exist in conventional RAS variants such as GRAS. KRAS can constitute a major advance for the practice
of balancing input–output tables and Social Accounting Matrices, in that it removes the necessity of manually
tracing inconsistencies in external information. This quality does not come at the expense of substantial
programming and computational requirements (of conventional constrained optimisation techniques).

Keywords: Matrix balancing; Inconsistent constraints; Constrained optimisation; RAS

1 INTRODUCTION

A common problem in compiling and updating Social Accounting Matrices (SAM) or

input–output tables is that of incomplete data. Missing matrix elements may be due to

a variety of reasons, such as costly and therefore incomplete industry surveys, or the sup-

pression of confidential information. External data points can be used to formulate a

system of equations that constrain the unknown matrix elements. However, unknowns

usually outnumber external constraints, resulting in the system being underdetermined,

that is exhibiting too many degrees of freedom to be solved analytically. The two most

prominent numerical approaches for reconciling such an underdetermined system are

probably the RAS bi-proportional scaling method, and mathematical programming

methods summarised here under the term constrained optimisation.

During the past 40 years, both approaches have successfully tackled a number of chal-

lenges, leading to a number of useful features (Lahr and de Mesnard, 2004; Huang et al.,

2008).1 Ideally, the technique should:

a) incorporate constraints on arbitrarily sized and shaped subsets of matrix elements,

instead of only fixing row and column sums;
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1 Lahr and de Mesnard (2004) provide a recent overview of extensions to the classic RAS technique. Huang et al.

(2008) explore different objective functions for input-output matrix updating.
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b) allow considering the reliability of the initial estimate;

c) allow considering the reliability of external constraints;

d) be able to handle negative values and to preserve the sign of matrix elements if required;

e) be able to handle conflicting external data.

While all criteria have been addressed by constrained optimisation methods, there is cur-

rently no RAS-type iterative scaling technique that satisfies criterion (e) (Canning and

Wang, 2005; Cole, 1992).2 The inability of RAS to deal with conflicting external data rep-

resents a considerable drawback for practice, because for most statistical agencies such

data are often rather the norm than the exception.

The most simple case of conflicting data is probably a situation in which two data

sources are located that prescribe two different values for the same matrix entry, resulting

in inconsistent constraints. When faced with such constraints, existing RAS variants adjust

the respective matrix element alternatively to either of the conflicting values, and thus

enter into oscillations without ever converging to a satisfactory solution.

More generally, sets of external data can be conflicting indirectly amongst each other.

Cole mentions convergence problems, and gives a simple example as a matrix (Cole, 1992)

a b

c 1

� �

with a, b, c � 0, and with inconsistent row and column totals (1, 3)’ and (1, 3). Möhr et al.

(1987) provide an example where the RAS-infeasibility is brought about by the existence of

unadjustable zero values in the matrix to be balanced.3 In practice, indirect conflict might

present itself for example when, on one hand, data on final demand and gross output of

wheat suggest a certain intermediate demand of wheat, however on the other hand this

intermediate demand is too large to be absorbed by the flour milling sector. Further

examples involving conflicting external information are GDP measures, and multi-national

and regional input–output systems (Barker et al., 1984; Smith et al., 1998).4 Möhr et al. call

such problems “RAS-infeasible”. In practice, such inconsistencies are often traced and

adjusted manually by statisticians (Dalgaard and Gnysting, 2004).5

2 Recently, Canning and Wang (2005) note that “another important advantage of the mathematical programming

model over scaling methods is in its flexibility. Additional constraints can be easily imposed, such as [. . .] incor-

porating an associate term in the objective function to penalize solution deviations from the initial row and

column total estimates when they are not known with certainty.”
3 Möhr et al. (1987) make this problem feasible by adding an “augmentation” which ensures that matrix elements

are non-zero where constraints require it. While this is a solution to these authors’ problem, it does not address

constraint conflicts in general.
4 Barker et al. (1984, p. 475) write: “. . . we observed that the income, expenditure, production and financial

estimates of data are typically inconsistent. The presence of such accounting inconsistencies emphasises the

unreliable nature of economic data.” See also Smith et al. (1998).
5 Barker et al. (1984, p. 475) remark that “. . . trading off the relative degrees of uncertainty of the various data items

in the system in order to adjust the prior data to fit the accounting identities [. . .] is essentially what national income

accountants do during the last stages of compiling the accounts when faced with major discrepancies between data

from different sources”. Dalgaard and Gysting (2004, p. 170) from Statistik Denmark report that many analysts

responsible for compiling input–output tables favour manual adjustment, because “based on the experience that

many errors in primary statistics are spotted in the course of a balancing process that is predominantly manual,

24 M. LENZEN et al.
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This work has two aims: (1) we undertake a comparative review of the development of

both RAS and constrained optimisation techniques; (2) we present a new generalised

iterative scaling method that is able to handle all five criteria above at once, and especially

conflicting external data and inconsistent constraints. We achieve this capability by introdu-

cing standard error estimates for external data. We build on previous RAS variants that satisfy

the remaining criteria, and thus arrive at a RAS-type method that matches the capabilities of

constrained optimisation. We will refer to our method as KRAS (Konfliktfreies RAS).

2 LITERATURE REVIEW

The following review is organised according to the criteria list in the introduction: Section

2.1 deals with criterion (a), Section 2.2 with (b) and (c), Section 2.3 with (d), and Section

2.4 with (e).

The RAS method – in its basic form – bi-proportionally scales a matrix A0 of unba-

lanced preliminary estimates of an unknown real matrix A, using A’s known row and

column sums. The balancing process is usually aborted when the discrepancy between

the row and column sums of A0 and A is less than a previously fixed threshold. Bacharach

has analysed the bi-proportional constrained matrix problem in great detail, in particular

with regard to the economic meaning of bi-proportional change (Bacharach, 1970; Leon-

tief, 1941; Stone and Brown, 1962; Miernyk, 1976; Giarratani, 1975),6 the existence and

uniqueness of the iterative RAS solution, its properties of minimisation of a distance

metric (Robinson et al., 2001),7 and uncertainty associated with errors in row and

column sum data and with the assumption of biproportionality. The origins of the

method go back several decades (Kruithof, 1937; Lamond and Stewart, 1981; Deming

and Stephan, 1940; Bregman, 1967).8 Stone and Brown (1962), Bacharach (1970), and

Polenske (1997) provide a historical background.

2.1 Constraints on Arbitrarily Sized and Shaped Subsets of Matrix Elements

The “modified RAS” (MRAS) approach was developed for cases when some of the matrix

elements of A are known in addition to its row and column sums, for example from an

compilers are typically convinced that a (mainly) manual balancing process yields results of higher quality than

those emanating from a purely automatic balancing of the accounts. From that point of view, the resources involved

in manual balancing are justified as a very efficient consistency check on the accounts.”
6 When applied to the forecasting of monetary input–output matrices, bi-proportional changes have been inter-

preted as productivity, substitution or fabrication effects (Leontief, 1941; Stone and Brown, 1962) affecting

industries over time. Miernyk’s (1976) view however is that the RAS method “substitutes computational tract-

ability for economic logic”, and that the production interpretation loses its meaning when the entire input–

output table is balanced, and not only inter-industry transactions (see also Giarratani, 1975).
7 The RAS, Linear Programming and minimum information gain algorithms yield a balanced matrix estimate that

is – in terms of some measure of multidimensional “distance” – closest to the unbalanced preliminary estimate.

When applied to temporal forecasting, this property is explained as a conservative hypothesis of attributing inertia

to inter-industrial relations (Bacharach, 1970, p. 26). While the classic RAS method is aimed at maintaining the

value structure of the balanced matrix, the closely related cross-entropy methods (Robinson et al., 2001) are

aimed at maintaining the coefficient structure.
8 See Kruithof (1937) as cited in Lamond and Stewart (1981); Deming and Stephan (1940); attributed to 1930s

Leningrad architect Sheleikhovskii by Bregman (1967a).
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industry survey (Paelinck and Waelbroeck, 1963). MRAS “nets” the preliminary estimate

A0, that is the known elements are subtracted, and A0 contains 0 at the corresponding pos-

itions. The net A0 is then subjected to the standard RAS procedure, and the known elements

are added back on after balancing.

In addition to certain elements of A, some aggregates of elements of A may be known. For

example, a published table AG of national aggregates may constitute partial information when

constructing a multi-regional input–output system, or a more disaggregated national table.

Accordingly, Oosterhaven et al. (1986) add a “national cell constraint” to the standard row

and column sum constraints. Similarly, Jackson and Comer (1993) use partition coefficients

for groups of cells of a disaggregated base year matrix to disaggregate cells in an updated but

aggregated matrix. Batten and Martellato (1985) discuss further constraints structures, invol-

ving intermediate and final demand data. Gilchrist and St Louis (1999, 2004) propose a three-

stage “TRAS” for the case when aggregation rules exist under which the partial aggregated

information AG can be constructed from its disaggregated form A. Cole (1992) describes

the general TRAS type that accepts constrained subsets of any size or shape. Gilchrist

and St Louis (1999), as well as Lenzen et al. (2006) demonstrate that the inclusion of

partial aggregated information into the RAS procedure leads to superior outcomes.

2.2 Reliability of the Initial Estimate and External Information

Another variant of the MRAS method takes into account the uncertainty of the preliminary

estimates, and contains the occurrence of perfectly known elements as a special case (see

Lecomber, 1975a, with case studies in Allen, 1974, and Allen and Lecomber, 1975). This

is accomplished by introducing a matrix E containing “reliability information” about the

elements in A0. E instead of A0 is then balanced in order to take up the difference between

the preliminary and true totals:

A� ¼ A0 � Eð Þ þ r̂Eŝ (1)

A� is the balanced estimate, and r̂ and ŝ are diagonal scaling matrices, as in the conventional

RAS algorithm. Where eij ¼ 0, aij remains unchanged during balancing. Lecomber also

investigates the influence of errors in the ‘true’ totals (Lecomber 1975a; 1975b).

A shortcoming of Lecomber’s approach is that the elements of E cannot be interpreted

as standard deviations. If we follow Lecomber in maintaining 0 � eij � a0ij, and consider

that RAS preserves the positive signs in E, then a�ij � a0ij � eij;8ij. In other words if eij

were the standard deviations of a0ij, then the balanced estimate A� could never go

below the initial estimate A0 for more than one standard deviation. An upper limit for

A� does not exist however. Thus, as Lecomber points out, the elements of E must be suffi-

ciently large to ensure the controlling vectors are non-negative – but there is no method to

ensure this, whilst still interpreting the elements of E as standard errors. Thus, considering

that conflicting external information may well diverge by more than one standard devi-

ation, it follows that MRAS will not reach a solution under sufficiently inconsistent con-

straints, unless more (unspecified) information on errors is obtained.

Lahr takes into account the uncertainties of external constraints in treating the toler-

ances of the RAS termination criteria as functions of the varying reliabilities of row

and column sums (Lahr, 2001). Dalgaard and Gysting (2004) incorporate information

about the reliability of external constraints (again row and column totals) into the

26 M. LENZEN et al.
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balancing process as “confidence factors” l, and successively adjust the target totals u(n)

of the nth iteration as a weighted sum u
ðnÞ
j ¼ l

ðn�1Þ
j u

ð0Þ
j þ 1� l

ðn�1Þ
j

� �
u
ðn�1Þ
j of the initial

unbalanced totals u
ð0Þ
j and the totals u

ðn�1Þ
j of the previous iteration. With subsequent iter-

ations, the confidence factors 0 � l
ðnÞ
j � 1 become smaller and smaller, thus gradually

converging away from the unbalanced initial totals uð0Þ, towards the balanced totals

uð1Þ. The innovation is that totals with high confidence (lj � 1) get adjusted away from

the initial totals much slower than those totals with low confidence (lj � 0).

While both approaches consider the varying reliability of totals, they cannot deal with

inconsistent totals. In applying conventional RAS scaling factors, Lahr’s algorithm would

always end up balancing matrix elements to satisfy only one of a number of conflicting

external constraints. Similarly, for large enough n, Dalgaard and Gysting’s (2004) algor-

ithm would oscillate around those inconsistent totals u
ðn�1Þ
j with non-zero confidence.9

2.3 Negative Elements

Junius and Oosterhaven (2003) derive a generalised RAS (“GRAS”) algorithm that can

balance negative elements, by splitting the matrix A into positive and negative parts P
and N, and balancing A¼P – N according to

r̂Pŝ� r̂�1Nŝ�1
� �

i ¼ u�

i r̂Pŝ� r̂�1Nŝ�1
� �

¼ v�
(2)

where i is the summation vector, and u�¼ eu and v�¼ev (Lenzen et al., 2007; Junius and

Oosterhaven, 2003).10

2.4 Conflicting Data–Constrained Optimisation

Neither MRAS, TRAS, nor GRAS deal satisfactorily with uncertainty and data conflict.

Such problems are so far only solved by constrained optimisation methods. Bacharach

(1970) has already shown that the conventional RAS technique is equivalent to the con-

strained minimisation of an information gain function f ¼ Sij[aijln(aij/ea0ij)]. Naturally,

this circumstance led to the parallel developments of both RAS and constrained optimis-

ation techniques for the purpose of balancing input–output tables or SAMs. It is interesting

to see that researchers working on either technique have faced almost the same challenges.

The basic structure of a constrained optimisation problem applied to SAMs is

Minimise f ðA;A0Þ; subject to Siaij ¼ xj and Sjaij ¼ xi (3)

9 Dalgaard and Gysting (2004) do describe balancing matrices with “unequal net row and column sum” and

“macro differences between supply and use”. However, rather than inconsistencies in external information,

this means correct differences in the sum over supply by industry and use by product, which naturally occur

in asymmetric commodity-by-industry supply and use tables.
10 Using the trivial case of starting with an initial estimate A that already satisfies all prescribed row and column

totals, Lenzen et al. (2007) construct a case where Junius and Oosterhaven’s (2003) GRAS balancing algorithm

leads to a solution X that is inferior to the initial estimate in terms of their target function. They show that the

factor e has to be taken out of the Junius and Oosterhaven formulation in order to correct the problem.

MATRIX BALANCING UNDER CONFLICTING INFORMATION 27
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where f is the objective function, and xi and xj are row and column totals. Morrison and

Thumann (1980) minimise a weighted sum of squares of deviations f ¼ Sij (aij – a0ij)
2/

wij, where the wij are the weights. They also explicitly describe the incorporation of exter-

nal information referring to general subsets of matrix elements, into a Lagrange multiplier

approach.

Byron (1978) incorporates variances for the initial estimate into a quadratic Lagrange

function, and uses the first-order conditions to solve for the Lagrange multipliers and

the balanced SAM. Van der Ploeg (1982; 1984) elegantly extends Byron’s formulation

by (a) adding disturbances to the external constraint information; and (b) combining the

SAM vector with these disturbances, and solve the for both the SAM and the disturbances

simultaneously. Since the solution for the Lagrange multipliers involves matrix inversion,

computing times are strongly influenced by the sizes of the SAM and constraint system.

Both Byron and van der Ploeg go to great lengths in exploiting the sparse structure

of the coefficients matrix, and in devising efficient algorithms in order to be able to

solve large SAMs. In effect, it is the introduction of the variance and disturbance

terms that enables handling conflicting external data (van der Ploeg calls it “constraint

violation”), because the solutions for the constraint values are allowed to deviate from

its prescribed value.

Lecomber (1975a), Morrison and Thumann (1980), and Harrigan and Buchanan (1984)

note that the conventional Langrange multiplier procedure (Equation 3) does not guarantee

non-negative solutions. This is undesirable because negative matrix entries can present

problems in input–output analysis (ten Raa and Van der Ploeg, 1989). With the require-

ment of non-negativity, the constrained optimisation problem essentially becomes a

bounded constrained optimisation. In general, one asks that the unknown SAM elements

are within lower and upper bounds li � ai � ui.
11

The mixing of equality and inequality conditions requires quadratic programming

methods, which renders the solution of the optimisation problem considerably more compli-

cated, as the expositions of Harrigan and Buchanan (1984), Zenios et al. (1989), and

Nagurney and Robinson (1992) may testify. This circumstance provides the motivation for

searching for a RAS variant that is able to deal with conflicting external data, (see Table 1).

TABLE 1. Recent extensions to RAS and optimisation techniques for balancing SAMs and input–
output tables.

Criterion RAS-type technique Constrained optimisation

(a) Gilchrist and St Louis (1999) Morrison and Thumann (1980)
(b) Lecomber (1975a, 1975b) Stone et al. (1942) Byron (1978)
(c) Lecomber (1975a; 1975b); Lahr (2001), Dalgaard

and Gysting (2004)
van der Ploeg (1982)

(d) Junius and Oosterhaven (2003) Harrigan and Buchanan (1970)
(e) This work van der Ploeg (1982)

11 Tarancon and Del Rio (2005) present an interesting variant of the bounded optimisation problem, by deriving

lower and upper bounds from criteria for the stable structural evolution of input–output coefficients, and intro-

ducing supplementary variables to take up the slack between the bounds and the matrix entries. If the model turns

out to be inconsistent because some constraints cannot be met within those bounds, then the analyst manually

chooses certain constraints to be relaxed, until no variable exceeds the bounds.

28 M. LENZEN et al.
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3. KRAS – AN EXTENSION OF GRAS

Compared with constrained optimisation techniques, RAS has enjoyed higher popularity,

which is probably due to ease of programming. However, as Tarancon and Del Rio

(2005, p.2) explicitly state, at present “. . . the RAS process cannot be developed with inter-

val estimates of the margins. Hence, point estimates are used, which may carry an implicit

error.” Considering that the use of RAS in statistical agencies requires the manual and

therefore often tedious removal of inconsistencies in the constraint system, it would be

desirable to have a RAS technique that deals with such common occurrences in a systema-

tic and automated way. The description of such a RAS variant is the topic of this section.

We will base our derivation strongly on the GRAS method of Junius and Oosterhaven

(2003). Our exposition proceeds in three steps. First, we generalise of GRAS to constraints

on arbitrary subsets of matrix elements. Second, we relax the restriction of GRAS for con-

straint coefficients to be either 1 or –1, and allow any real number. Third, we incorporate

reliability and conflict of external data. While we present these extensions in a succession

for the sake of clarity, each of them can be applied separately to GRAS. For example, it is

possible to modify the original GRAS method only by incorporating the modifications in

Section 0 in order to deal with reliability and conflict of external data.

Bacharach (1970, pp. 79–86) shows that the simple biproportional RAS algorithm can

be derived from minimizing a minimum-information function

f A;A0ð Þ ¼
X

i;j

aijln
aij

e a0ij

(4)

subject to constraints u and v on known row and column totals

X
j

aij ¼ ui and
X

i

aij ¼ vj (5)

where e is the basis of the natural logarithm. The GRAS method is derived in the same

way. However, the preliminary estimate A0 (which becomes the solution Að0Þ at step

zero), is split into positive and negative parts according to Að0Þ ¼ Pð0Þ � Nð0Þ, and alter-

nately row- and column-scaled using diagonal scalar matrices r̂ and ŝ, so that after

the nth round of balancing, AðnÞ ¼ r̂ðn�1ÞPðn�1Þŝðn�1Þ
� r̂ðn�1Þ
h i�1

Nðn�1Þ ŝðn�1Þ
h i�1

. AðnÞ is

then subjected to the next scaling operation. Junius and Oosterhaven’s GRAS derivation

arrives at a second-order polynomial that defines scalars

r
ðnÞ
i ¼

ui þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ 4
P

j

p
ðnÞ
ij

P
j

n
ðnÞ
ij

r
2
P

j

p
ðnÞ
ij

; with

p
ðnÞ
ij ¼ p

ðn�1Þ
ij s

ðn�1Þ
j

n
ðnÞ
ij ¼ n

ðn�1Þ
ij s

ðn�1Þ
j

h i�1 s
ðn�1Þ
j ¼

vj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

j þ 4
P

i

p
ðn�1Þ
ij

P
i

n
ðn�1Þ
ij

r
2
P

i

p
ðn�1Þ
ij

(6)
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The algorithm converges if r̂Pŝ� r̂�1Nŝ�1
� �

i� u
		 		 , d uk k and

i r̂Pŝ� r̂�1Nŝ�1
� �

� v
		 		 , d vk k for a sufficiently small d.

3.1 Incorporating Constraints on Arbitrary Subsets of Matrix Elements

Consider now a generalised formulation of constraints as in Ga ¼ c, where a is the vec-

torisation of A above. Such a formulation includes constrained row and column sums, con-

straint single elements, constrained subsets, and negative elements as special cases.

Constraints can include any number of elements, which may be fully, partly or non-adja-

cent.12 Constraints may also exclude some of the row and column totals (compare Thissen

and Löfgren, 1998). The Junius and Oosterhaven minimisation problem then becomes

Minimise f a; a0ð Þ ¼
X

i;j

aij



 

 ln
aij

e a0ij

subject to Ga ¼ c (7)

Let there be nC constraints. Equation 6 can then be generalised to

rðnÞ ¼
ci þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i þ 4
P

j;aðn�1Þ
j

gij.0
gija
ðn�1Þ
j

P
j;aðn�1Þ

j
gij,0

gija
ðn�1Þ
j

q
2
P

j;aðn�1Þ

j
gij.0

gija
ðn�1Þ
j

and

a
ðnÞ
j ¼ a

ðn�1Þ
j rðnÞ

� �Sgn a
ðn�1Þ

j
gij

� �
; with i ¼ n mod nC

(8)

In Equation 8, the negative elements in Equation 6 have been replaced with negative

coefficients on positive elements, but otherwise the formulation is exactly the same. There

is only one scalar ri for each constraint i, and these scalars are applied consecutively

for all i ¼1, . . ., nC.13 The ri and aj are calculated alternately. The GRAS feature of

scaling negative elements by the inverse of the positive scalar is evident in the exponent

Sgn a
ðn�1Þ
j gij

� �
in Equation 8. The algorithm converges if

Ga� ck k , d ck k (9)

for a sufficiently small d.

3.2 Incorporating Constraints with Non-unity Coefficients

Consider now non-unity constraint coefficients gij [ R.14 For such constraints the Junius

and Oosterhaven GRAS will not work anymore. Allowing the ai to be both positive and

12 Single-element constraints need not be part of the scaling procedure, but could be “netted out” using the “modi-

fied RAS” method.
13 Here, the modulus function a mod b refers to the remainder of the division of a by b.
14 Non-unity constraints can appear when there is knowledge of relative as opposed to absolute values for some

matrix elements. For example, in the construction of multi-regional input–output systems we may use infor-

mation regarding the fraction of value added or gross output allocated to a given region.
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negative (as in GRAS), we write the Lagrangean as

L a; a0;lð Þ ¼
X

i;ai�0

ai ln
ai

e a0i

�
X

i;ai,0

ai ln
ai

e a0i

þ
X

i

li

X
j

gijaj � ci

" #
(10)

The first-order minimum conditions are

0 ¼
@L a; a0;lð Þ

@ak

¼
ln ak

e a0 k
þ 1þ

P
i ligik ¼ ln ak

a0 k
þ
P

i ligik if ak � 0

�ln ak

e a0 k
� 1þ

P
i ligik ¼ �ln ak

a0 k
þ
P

i ligik if ak , 0


(11)

The solution for a is hence of the form

ak ¼

a0 ke�
P

i
ligik ¼ a0 k

Q
i

e�ligik if ak � 0

a0 ke
P

i
ligik ¼ a0 k

Q
i

eligik if ak , 0

8><
>: (12)

This form reflects the fact that negative and positive matrix elements are proportionately

balanced with respectively inverse scaling terms Pie
�ligik and Pie

ligik . Inserting Equation

(11) into the condition Ga ¼ c yields

X
j;a0j�0

gija0j

Y
k

e�lkgkj þ
X

j;a0j,0

gija0j

Y
k

elkgkj � ci ¼ 0 (13)

The multi-proportional problem in Equation 13 can be solved iteratively using

Bregman’s balancing method (Bregman, 1967a; Elfving, 1980; Lamond and Stewart,

1981; Erlander, 1981).15 Starting with the initial solution að0Þ ¼ a0, and with chosen

fl
ð0Þ
k gk¼1;...;nC

, only one of the nC Lagrange multipliers li is adjusted at any one time, by

first solving constraint 1

0a
ð0Þ
j � 0 gija

ð1Þ
j e�l

ð1Þ
i

gij

Y
k=i

e�l
ð1Þ

k
gkj þ

X
j;a
ðn�1Þ

j
,0

gija
ð0Þ
j el

ð1Þ

k
gij

Y
k=i

el
ð0Þ

k
gkj � cia

ð0Þ
j

� 0gija
ð0Þ
j e� l

ð1Þ

i
�l
ð0Þ

ið Þgij

Y
k

e�l
ð0Þ

k
gkj þ

X
j;a
ð0Þ
j

,0

gija
ð0Þ
j e l

ð1Þ

k
�l
ð0Þ

ið Þgij

Y
k

el
ð0Þ

k
gkj � ci (14)

15 See Bregman (1967b), Elfving (1980) and Lamond and Stewart (1981). Elfving (1980) distinguishes “Gauss-

Seidel type schemes”, where only one Lagrange multiplier is adjusted in every step, and “Jacobi type methods”

where the non-linear system in Equation 12 is solved simultaneously for all Lagrange multipliers. The latter

methods require the Jacobian of Equation 12 to have full rank, i.e. all constraint equations have to be linearly

independent (compare Eriksson, 1980; Erlander, 1981).
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then updating

a
ð1Þ
j ¼

a
ð0Þ
j e� l

ð1Þ
i
�l
ð0Þ
ið Þgij

Q
k

e�l
ð0Þ

k
gkj for a

ð0Þ
j � 0

a
ð0Þ
j e l

ð1Þ

i
�l
ð0Þ

ið Þgij
Q
k

el
ð0Þ

k
gkj for a

ð0Þ
j , 0

8><
>: (15)

with l(1) given by Equation 14. This is followed by solving constraints i 8i . 1

X
j;a
ðn�1Þ

j
�0

gija
ðn�1Þ
j e� l

ðnÞ
i
�l
ðn�1Þ
ið Þgij þ

X
j;a
ðn�1Þ

j
,0

gija
ðn�1Þ
j e l

ðnÞ

k
�l
ðn�1Þ
ið Þgij � ci ¼ 0 (16)

forl
ðnÞ
i , iteratively, with known l

ðn�1Þ
k 8k, and with i¼n mod nC. The new solution of each

step (n) is computed via (compare Equations 2.5 and 2.6 in Elfving, 1980)

a
ðnÞ
j ¼

a
ðn�1Þ
j e� l

ðnÞ
i
�l
ðn�1Þ
ið Þgij for a

ðn�1Þ
j � 0

a
ðn�1Þ
j e l

ðnÞ

i
�l
ðn�1Þ

ið Þgij for a
ðn�1Þ
j , 0

8<
: (17)

and

l
ðnÞ
i ¼

given by Equation 16 for i ¼ n mod nC

l
ðn�1Þ
i ; fori = n mod nC


(18)

Calling e l
ðnÞ

i
�l
ðn�1Þ

ið Þ ¼ r
ðnÞ
i , solving Equation 16 is equivalent to calculating the roots of

the generalised polynomials

Piðl
ðnÞ
i Þ ¼

X
j;aj�0

gija
ðn�1Þ
j r

ðnÞ�gij

i þ
X

j;aj,0

gija
ðn�1Þ
j r

ðnÞgij

i � ci ¼ 0 (19)

iteratively for all fr
ðnÞ
i gi¼1;...;nC

, given known p
ðn�1Þ
j and l

ðn�1Þ
k .16

It is important to understand that the idea of Junius and Oosterhaven of inversely scaling

positive and negative matrix elements applies in exactly the same way to elements that are

added and subtracted in a constraint, respectively. This is reflected in the sign of the expo-

nents gij of the ri. For example, consider the constraint a1 þ a2 – a3 ¼ 2, with a01 ¼ 3,

a02 ¼ 5, and a03 ¼ 1. Scaling a1 and a2 with 1
2
, and a3 with 1

2
– 1 ¼ 2 yields the desired

result 1.5 þ 2.5 – 2 ¼ 2. If an element is both negative and subtracted, it has to be

scaled like a positive added element. For example, consider the above constraint with

a01 ¼ 3, a02 ¼ 5, and a03 ¼ –1. Scaling all elements a1, a2 and a3 with 2/9 yields the

desired result 6/9þ
10/9 – (–2/9) ¼ 2.

Note that the gij are not necessarily unity integers as in GRAS, but gij[R. Since, in

general, no analytical solution exists, Erlander (1981) and Eriksson (1980) suggest

16 The problem can be restated so that all exponents are positive, by multiplying Equation 14 with ri
ðnÞ

max
j;pj�0

gijf g
.
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Newton’s method for an iterative solution.17 Applying Newton’s method to Equation 14

requires calculating the derivative

@piðl
ðnÞ
i Þ

@lðnÞi

¼
X

j;a
ðn�1Þ
j
�0

gija
ðn�1Þ
j e� l

ðnÞ
i
�l
ðn�1Þ
ið Þgij

Y
k

e�l
ðn�1Þ

k
gkj �gij

� �

þ
X

j;a
ðn�1Þ
j

,0

gija
ðn�1Þ
j e l

ðnÞ

k
�l
ðn�1Þ

ið Þgij

Y
k

el
ðn�1Þ

k
gkj gij

(20)

and iterating over k

l
ðn;kÞ
i ¼ l

ðn;k�1Þ
i �

piðl
ðn;k�1Þ
i Þ

@piðl
ðn;k�1Þ
i Þ=@lðnÞi

(21)

3.3 Incorporating Reliability and Conflict of External Data

In cases of inconsistent constraints brought about by conflicting external data, the termin-

ation condition in Equation 9 may never be met, and GRAS has to be terminated if the

distance function between the constraints c and their realisations Ga does not improve

anymore, that is if for two subsequent iterations n – 1 and n

Ga� ck kðnÞ� Ga� ck kðn�1Þ, d (22)

for a sufficiently small d. Following this termination, we propose a GRAS-type algorithm

that modifies the constraints c as well:

rðnÞ ¼
c
ðnÞ
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðnÞ2
i þ 4

P
j gþij a

ðn�1Þ
j

P
j g�ij a

ðn�1Þ
j

q
2
P

j gþij a
ðn�1Þ
j

;

c
ðnÞ
i ¼ c

ðn�1Þ
i � Sgn c

ðn�1Þ
i �

X
j

gija
ðn�1Þ
j

 !

�Min c
ðn�1Þ
i �

X
j

gija
ðn�1Þ
j












;asi

 !
with c

ð0Þ
i ¼ ci ;

a
ðnÞ
j ¼ a

ðn�1Þ
j rðnÞ

� �Sgn gijð Þ
; and i ¼ n mod nC;

(23)

where 0 � a � 1 and the si are the standard deviations of the ci.
18 We refer to this

17 Using Newton’s method, a root r of a function f(x), in the vicinity of x0, is approached by first truncating the

Taylor expansion around x0: f(x) ¼ f(x0)þf’(x0)(x – x0)þ1
2

f’(x0) (x – x0)2
þ. . ., to 0 ¼ f(r) � f(x0)þf’(x0)

(r – x0), and then iteratively solving xn ¼ xn– 1 – f(xn – 1)/f’(xn – 1).
18 If external data are not normally distributed, the adjustment of constraints asi in Equation 23 could be adapted

to the characteristics of the alternative distribution. For example, the shape parameter of a Weibull distribution
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algorithm as KRAS (“Konfliktfreies RAS”). The essence of this idea is that once GRAS

terminates in oscillations without reaching convergence, the original external constraints

ci can clearly not all be satisfied simultaneously, and either some of them or all of them

must be erroneous. Just as in constrained optimisation, the ci must be modified

“towards” their realisations fGagi in order to achieve convergence. Since each constraint

is known to a higher or lower degree of accuracy. Therefore, an amount asi is added or

subtracted from eachc
ðn�1Þ
i , depending on the sign sgn(c

ðn�1Þ
i � Sjgija

ðn�1Þ
j ). The constant

a can be chosen freely: The higher its value, the more rapid the adjustment process, but

also the more inaccurate the adjustment. Note that, in order to prevent overshoot in situ-

ations where the realisation fGagi is closer to the ci than si, the maximum adjustment

allowed is jc
ðn�1Þ
i � Sjgija

ðn�1Þ
j j. With constraint values modified as in Equation 23, the

termination criterion of KRAS is equal to that in Equation 9.

4 APPLICATIONS

In the following, we will apply KRAS to RAS-infeasible balancing problems documented

in the literature.

4.1 Cole

The most simple RAS-infeasible problem that we found in the literature was posed by Cole

(1992); vectorising Cole’s matrix to vector a, it can be represented as

G ¼

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

0 0 0 1

0
BBBB@

1
CCCCA and c ¼

1

3

1

3

1

0
BBBB@

1
CCCCA (24)

The first four constraints are the column and row sums, respectively, and the fifth con-

straint fixes a4. This problem is infeasible for ai . 0 8i, because in requiring a4 ¼ 1, con-

straint 5 imposes on constraints 2 and 4 that both a2 ¼ 2 and a3 ¼ 2, which conflicts with

constraints 1 and 3. Starting with the initial estimate a0 ¼ (1, 1, 1, 1), and setting the stan-

dard deviation s ¼ (0.01, 0.01, 0.01, 0.01, 0.01),19 KRAS produces the solution a ¼ (0,

11/3, 11/3, 11/3) with the realisation Ga ¼ (11/3, 22/3, 11/3, 22/3, 11/3). The difference

between imposed and realised constraint values is Ga–c ¼ (1/3, –1/3, 1/3, –1/3, 1/3),

and thus constant across all constraints. This is a direct consequence of the standard devi-

ation s being equal for all constraints.

Setting s5 ¼ 0.001 and s5 ¼ 0.1, respectively, more or less accuracy is put on the

fifth constraint (which determines a4) compared to the column and row sum constraints

could take the place of the standard deviation s in Equation 23. Further, if conflicting values were distributed

uniformly, adjustments could be made in proportion to the uniform ranges. In the case of subjective reliability

scores, one could in a similar fashion, that is, by taking normalised scores as step-wise adjustments.
19 Cole (1992) does not give any information on reliability. All standard deviations were set by the authors.
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(Table 2). Placing more accuracy on constraint 5 yields a solution a4 ¼ 1.05 which is

closer to the required value (fGa – cg5 ¼ 0.05), while placing less accuracy on constraint

5 yields a solution a4 ¼ 1.83 further away (fGa – cg5 ¼ 0.83). The opposite holds for

constraint 1 to 4. It is interesting to observe though that the distance Ga� cð Þŝ�1 in

terms of the number of standard deviations is roughly constant across all constraints in

both cases.

Choosing the standard deviation to diminish from constraint 1 through to 5 results in the

absolute difference to decrease as well, with constraint 5 satisfied best. Once again, the

distance in terms of the number of standard deviations is roughly constant across all con-

straints. This is a direct consequence of the constraint adjustment mechanism described

around Equation 23, which adjusts constraint values c(n) relative to c(n – 1) by adding or sub-

tracting a fixed portion a of a one standard deviation. In this case, the final solution is about

12 standard deviations away from the initially prescribed constraint values.

For example, since in the third case the standard deviations of constraints are all differ-

ent, constraint values are adjusted differently (in absolute terms) throughout the KRAS

run. In this case, constraint 1 is assigned the highest standard deviation and its value is

therefore altered most (Figure 1).

Once again, as a consequence of the balancing mechanism in Equation 23, the adjust-

ment in terms of the number of standard deviations is constant across all constraints

(Figure 2). Throughout the KRAS balancing run, the adjusted constraints move away

evenly from the initially prescribed constraints until at about 12 standard deviations,

where no more conflict occurs.

In one final numerical experiment on Cole’s problem, we increased the range of

the si to span 2 orders of magnitude, from 0.001 to 0.1 (Table 3). We observed that

the least stringent constraint (number 1) is more closely matched (9s1) than other

constraints (16si).

The reason for this phenomenon is that because of its relatively “lax” standard devi-

ation, constraint 1 starts to become well balanced already from about step 200 in the

TABLE 2. KRAS solutions for Cole’s (1992) RAS-infeasible problem.�

s 0.01 0.01 0.01 0.01 0.001
A 0.00 1.48 1.48 1.05
Ga 1.48 2.52 1.48 2.52 1.05
Ga – c 0.48 20.48 0.48 20.48 0.05
Ga� cð Þŝ�1 47.57 247.62 47.61 247.67 47.66

s 0.01 0.01 0.01 0.01 0.1
A 0.00 1.08 1.08 1.83
Ga 1.08 2.92 1.08 2.92 1.83
Ga – c 0.08 20.08 0.08 20.08 0.83
Ga� cð Þŝ�1 8.27 28.31 8.32 28.36 8.34

s 0.05 0.04 0.03 0.02 0.01
A 0.00 1.37 1.62 1.13
Ga 1.62 2.50 1.37 2.75 1.13
Ga – c 0.62 20.50 0.37 20.25 0.13
Ga� cð Þŝ�1 12.46 212.49 12.50 212.56 12.56

�Vectors are presented as rows.
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FIGURE 1. Evolution of Dc(n) ¼ c(n) – c(0) throughout KRAS for Cole’s problem.

TABLE 3. KRAS solutions for Cole’s (1992) RAS-infeasible problem.�

s 0.10 0.05 0.01 0.005 0.001
a 0.00 1.16 1.90 1.02
Ga 1.90 2.18 1.16 2.92 1.02
Ga – c 0.90 20.82 0.16 20.08 0.02
Ga� cð Þŝ�1 9.02 216.39 16.39 216.41 16.40

�Vectors are presented as rows.

FIGURE 2. Evolution of DcðnÞŝ�1 throughout KRAS for Cole’s problem.
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KRAS run. In other words the realisation fGag1 of constraint 1 starts to continuously fall

within the interval [c
ðnÞ
1 � as1 ; c

ðnÞ
1 þ as1]. This means that the term Minðjc

ðn�1Þ
1 �

Sjg1ja
ðn�1Þ
j j;as1Þ in Equation 23 yields Dc

ðnÞ
1 ¼ c

ðn�1Þ
1 � Sjg1ja

ðn�1Þ
j , and the constraint

value needs to be adjusted by less than as1 in order to prevent overshoot (compare

Section 0). As a consequence DcðnÞ and DcðnÞŝ�1 ‘flatten out’ (Figure 3).

4.2. Möhr et al.

Another RAS-infeasible problem was posed by Möhr et al. (1987). It can be

represented as

G ¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and c ¼

301

104

105

10

100

220

100

100

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(25)

The first four constraints are the row sums, the last four constraints are the column sums

of the variable matrix

A ¼

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

0
BB@

1
CCA (26)

FIGURE 3. Evolution of DcðnÞ and DcðnÞŝ�1 throughout KRAS for Cole’s problem.
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This problem is RAS-infeasible for the initial estimate

A0 ¼

90 0 95 95

5 101 2 2

5 101 2 2

0 18 1 1

0
BB@

1
CCA (27)

because on the one hand a1, a2 and a4 belong to columns whose sums are required to equal

100 by constraints 1, 2 and 3, hence a1 � 100, a2 � 100, and a4 � 100, but on the other

hand a1þa2þa4 ¼ 301 is imposed by the first constraint. Strictly speaking, this problem is

RAS-infeasible not because of conflicting constraints, but because of ill-set initial esti-

mates. Setting all standard deviations to si ¼ 0.1, KRAS produces the solution

A ¼

100:16 0 100:26 100:26

0:09 104:18 0:03 0:03

0:09 105:18 0:03 0:03

0 10:31 0:01 0:01

0
BB@

1
CCA (28)

with Ga¼(300.67, 104.33, 105.33, 10.33, 100.33, 219.67, 100.33, 100.33), a being the

vectorisation of A. All realisations fGagi are 0.33, or 3.3 standard deviations away from

the imposed constraints c.

4.3 Updating the Australian Supply-use Tables for 1993–1994

A third example was trialled for a “real-world” scenario that may confront analysts.

Currently the Australian Bureau of Statistics (ABS) provides data within the input–

output framework that is balanced between the supply and use tables. This has not

always occurred, however, and the 1993–1994 and earlier supply-use tables are not

properly balanced across row and column sums. These discrepancies are due to incon-

sistent source data. For 1993–1994, there is a discrepancy of row totals of up to 11% for

56% of the rows. The final published tables still contain these discrepancies, and the

analyst is left with unbalanced tables to use. Further to this issue are the occurrences

of confidential cells, which must also be estimated (and is possible with the normal

RAS procedure).

The scale of this problem is at the level of 107 products and 107 industries, with seven

categories of final demand, and six categories of value added. In this example, the balance

is performed across the separate supply and use tables. The data used for both initial esti-

mate and constraints were the 1993–1994 IO tables, published by the Australian Bureau of

Statistics (1997). Estimates for the standard deviations of published data were obtained

from Australian business operations and industry performance statistics, Australian

Bureau of Statistics (1995, 2005) and from financial operating data of Australian manu-

facturing industries. Additional “balancing constraints” were constructed so as to ensure

the balance of row totals, column totals, final and intermediate demand totals, value

added totals, and respective row and column totals between the supply and use tables.

Standard deviations were set to zero for the balancing constraints so as to ensure that

these constraint algorithms were satisfied exactly. The total number of variables is

25,353, and the total number of constraints, nC ¼ 26,191.

38 M. LENZEN et al.
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The balancing run consists of two steps: in a first step a RAS procedure is run until

Ga stops converging towards cðnÞ ¼ cð0Þ, which occurs when adjustment cannot continue

with the given conflicting constraint values (here after 264 iterations); in a second step a

KRAS procedure allows the constraints to change according to their assigned deviations.

The initial RAS step is implemented in order to estimate confidential cells and other

imbalances in the table before KRAS is applied. Convergence is assumed when the

maximum deviation of any Ganð Þi fromc
ðnÞ
i is less than $1 (here after 681 iterations).

Figure 4 shows the evolution of the mean absolute convergence distance between

Ga and cðnÞ : SijGan � cðnÞji=nC, and of the mean relative convergence distance:

SijGa� cðnÞji= si þ d½ �nCð Þ throughout the RAS and KRAS steps (up to iteration number

1500)20. Values have been normalised to their respective maxima.

Figure 4 shows the initial step during normal RAS convergence, with preliminary rapid

gains diminishing at approximately half of the required convergence distance to the final

solution. This “premature” convergence is entirely due to constraint conflict. At the 265th

iteration, KRAS allows further convergence, with rapid initial gains (corresponding to the

adjustment of the most problematic constraints) again slowing as true convergence is

reached, and finer adjustments are required.

In Figure 5, the mean deviation of c(n) from c(0),Sijc
ðnÞ � cð0Þji=nC, is plotted, again nor-

malised to the maximum deviation (we call this the ‘mean constraint adjustment’).

The initial 264 iterations follow the normal RAS procedure, and hence do not require

constraint adjustment. The ensuing iterations, however, show large initial changes, corre-

sponding to the changing of the most inaccurate constraints. The speed at which this

adjustment takes place (and hence the slope of the graph) can be controlled through chan-

ging the precision of the adjustment parameter, a.21

FIGURE 4. Mean absolute convergence distance and mean relative convergence distance, normal-
ised to their maxima, for the 1993–1994 IO tables.

20 The small d value has been incorporated to handle the case of si ¼ 0.
21 The run time for this example was in the order of several seconds for complete covergence, using the intel

fortran90 compiler v.7.1 on a RHEL-WS24 linux Kernel with a Xenon 32 bit and 2�3.1 GHz CPU and

4Gb RAM.
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4.4 An Australian Multi-regional Input–output System

In a fourth case study, we have used KRAS to balance a detailed multi-regional input–

output (MRIO) framework of Australia. This framework covers 344 industrial sectors

across the eight Australian States and Territories.22 It makes use of a large and diverse

amount of the most recent survey data available (for details see Gallego and Lenzen,

2009). To our knowledge, this is the first such detailed framework estimated in Australia.

Furthermore, this MRIO system has been complemented with physical data on more than a

thousand social and environmental parameters, such as employment, water use or green-

house gas emissions.23 This generalisation allows tracing social and environmental

impacts along interregional supply chains. The trade specification in this model has a

strong influence on evening out regional differences of environmental intensities of com-

modities bought by consumers. For example, due to Australia’s variable climate, land

and water use intensities in agriculture vary significantly across regions. These intensities

become “mixed” in a final consumer’s commodity basket due to interregional trade. The

extent of this dilution, and hence the magnitude of land and water intensities of regionally

purchased commodities, depends critically on the specification of the trade model.

A preliminary estimate of the Australian 1998–1999 economic MRIO system, which

contains 8,792,675 variables, has been balanced to satisfy nC ¼ 462,909 constraints

using KRAS. These constraints take different shapes and sizes ranging from 1 coefficient

constraints to constraints containing more than 8 million coefficients. The coefficients, in

turn, include both negative as well as non-unity real values. Furthermore, many of the con-

straints come from survey data such as the national input–output tables, state accounts,

and other commodity statistics, and contain errors which make them conflicting. Therefore

they have been assigned standard deviations fsig according to their origin.24 A smaller

FIGURE 5. Mean constraint adjustment by iteration, normalised to the maximum adjustment, for the
1993–1994 IO tables.

22 New South Wales, Victoria, Queensland, South Australia, Western Australia, Tasmania, Northern Territory,

Australian Capital Territory.
23 See http://www.isa.org.usyd.edu.au/research/ISA_TBL_Indicators.pdf.
24 It has been assumed that these fsig represent the standard deviations of normally distributed random errors in

the survey data. Possible systematic errors in the data sources have not been captured in this model.
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fraction of the constraints, such as the internal accounting constraints are to be satisfied

exactly and are assigned deviations si ¼ 0.25

As per the Australian 1993–1994 tables, the balancing run consists of two steps: the

initial RAS procedure until Ga stops converging towards cðnÞ ¼ cð0Þ (here after 526 iter-

ations); and the subsequent KRAS procedure. Convergence is assumed when the

maximum deviation of any Ganð Þi fromc
ðnÞ
i is less than $1000 (here after 3328 iterations).

Figure 6 shows the evolution of the mean absolute convergence distance between Ga and

cðnÞ and of the mean relative convergence distance throughout the RAS and KRAS steps

(up to iteration number 1500), as in Figure 4. Values have again been normalised to

their respective maxima.

Both balancing steps are characterised by a rapid initial adjusting phase (first third of the

full step) followed by a slow adjustment towards the final values which extends over the

remaining iterations. The evolution of the normalised average change in constraint values

during the first 1500 KRAS iterations is shown in Figure 7 (which has a similar setup as

Figure 5).26

FIGURE 6. Evolution of the mean absolute convergence distance and mean relative convergence
distance, normalised to their maxima, throughout RAS and the first two thirds of KRAS during
the balancing of the Australian MRIO system.

25 A small d value was applied in cases of si ¼ 0.
26 The initial RAS iterations took up to 5 min of run time each, due to the time spent on the Newton algorithm

looking for a solution of Equation 16 when far from the initial estimate. However, this time shortened as the run

advanced and the average run time for a KRAS iteration was about 5 sec.
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5 CONCLUSIONS

We have developed a RAS variant, generalised iterative scaling method (KRAS) that is

able to balance and reconcile input–output tables and SAMs under conflicting external

information and inconsistent constraints. In addition, KRAS fulfils all requirements of

earlier RAS variants such as GRAS, and of constrained optimisation techniques:

a) constraints on arbitrarily sized and shaped subsets of matrix elements;

b) consideration of the reliability of the initial estimate and the external constraints;

c) ability to handle negative values and to preserve the sign of matrix elements.

Applying KRAS in four case studies, we find that, as with constrained optimisation,

KRAS is able to find a compromise solution between inconsistent constraints; this

feature does not exist in conventional RAS variants such as GRAS.

KRAS can constitute a major advance for the practice of balancing input–output tables

and Social Accounting Matrices, in that it removes the necessity of manually tracing

inconsistencies in external information. In contrast to constrained optimisation, this

quality does not come at the expense of substantial programming requirements, and

long run times.

While KRAS appears to be able to solve these problems, it should not be forgotten that

collecting data requires skilled manual input. As Barker et al. emphasise, automated

balancing of national accounts “is not a replacement for knowledge of the data and its

sources but an enhancement of it, allowing us to produce fully balanced accounts with

the adjustments reflecting the quality of the data (Barker et al., 1984).”

FIGURE 7. Evolution of the mean constraint adjustment by iteration, normalised to the maximum
adjustment, during the balancing of the Australian MRIO system.
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